Cocaine-induced brain plasticity may protect the addicted brain

Aug 27, 2008

A new study has unraveled some of the mysteries of the cocaine-addicted brain and may pave the way for the design of more effective treatments for drug addiction. The research, published by Cell Press in the August 28 issue of the journal Neuron, identifies specific brain mechanisms that underlie addiction-related structural changes in the brain and provides surprising insight into how these changes may actually defend the brain during excessive drug use.

Persistence of drug-seeking behaviors after long periods of abstinence has presented a major challenge for treatment of addiction. It has been hypothesized that long-term physical changes in the brain might underlie enduring behaviors associated with drug abuse. One long-lasting structural correlate that has been observed across many models of addiction is an increase in the density of dendritic spines on medium-sized spiny neurons (MSNs) in the nucleus accumbens (NAc). The spines represent critical points of communication, called excitatory synapses, between brain cells. The density of these inputs could have a major impact on the way information is processed in the brain and may regulate addiction-related behaviors.

"Although several groups have documented that repeated cocaine exposure increases NAc spine density, the precise molecular mechanisms that control this process have remained elusive," says senior study author Dr. Christopher W. Cowan from the Department of Psychiatry at The University of Texas Southwestern Medical Center. "Moreover, the cocaine-induced increase in NAc spine density has been hypothesized to contribute to the long-lasting behavioral sensitization that occurs after repeated cocaine exposure, but direct evidence concerning the functional relationship between these two processes is lacking."

Previous work demonstrated that chronic cocaine exposure increased levels of cyclin-dependent kinase 5 (Cdk5) in the NAc and that inhibition of Cdk5 blocked the cocaine-induced increase in spine density. The myocyte enhancer factor 2 (MEF2) family of transcription factors are Cdk5 targets that are expressed throughout the developing and adult brain and have been implicated in the regulation of excitatory synapses.

Dr. Cowan and colleagues found that chronic cocaine exposure reduced MEF2-dependent transcription and promoted increased MSN dendritic spine density in the NAc. Unexpectedly, expression of an overactive form of MEF2 in the NAc that blocked cocaine-induced spine density was associated with an enhanced behavioral sensitivity to cocaine whereas reduction of endogenous MEF2 proteins reduced these behaviors. These results suggest that the cocaine-induced increases in dendritic spine density may actually limit behavioral changes associated with drug addiction rather than support them.

"Taken together, our findings implicate MEF2 as a key regulator of structural synapse plasticity and sensitized responses to cocaine and suggest that reducing MEF2 activity, and thereby increasing spine density, in the NAc may be a compensatory mechanism to limit long-lasting maladaptive behavioral responses to cocaine," concludes Dr. Cowan. "A better understanding of the MEF2-associated molecular mechanisms that regulate cocaine-induced structural and behavioral plasticity could ultimately lead to the development of improved treatments for drug addiction."

Source: Cell Press

Explore further: AncientBiotics - a medieval remedy for modern day superbugs?

Related Stories

Scientists convert microbubbles to nanoparticles

43 minutes ago

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Cats relax to the sound of music

44 minutes ago

According to research published today in the Journal of Feline Medicine and Surgery by veterinary clinicians at the University of Lisbon and a clinic in the nearby town of Barreiro in Portugal, music is likew ...

Amazon unveils move in local services

52 minutes ago

US online giant Amazon said Monday it was launching a services marketplace offering to connect consumers with businesses offering anything from home improvement to piano lessons.

Compound from soil microbe inhibits biofilm formation

59 minutes ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Recommended for you

'Google Maps' for the body: A biomedical revolution

21 hours ago

A world-first UNSW collaboration that uses previously top-secret technology to zoom through the human body down to the level of a single cell could be a game-changer for medicine, an international research ...

New compounds could offer therapy for multitude of diseases

22 hours ago

An international team of more than 18 research groups has demonstrated that the compounds they developed can safely prevent harmful protein aggregation in preliminary tests using animals. The findings raise hope that a new ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.