Nobel Prize-Winner Confirms UQ Quantum Physics Theory

Jun 02, 2004

A novel quantum theory developed by University of Queensland, Australia researchers has been confirmed by recent experiments at a Nobel Prize-winning lab.

Professor Bill Phillips’ Nobel Prize-winning group at the US National Institute of Standards and Technology (NIST), has published an experimental confirmation of a theoretical prediction by Dr Karen Kheruntsyan and Professor Peter Drummond from the UQ node of the ARC Centre of Excellence for Quantum-Atom Optics.

The recent theoretical work carried out by the UQ physicists, in collaboration with their colleagues at Ecole Normale Superiere of France (ENS), was the first calculation of spatial pair correlations of an ultra-cold gas of atoms in one dimension.

Although these systems were first modelled in the 1960s, no exact pair correlations have been calculated in 40 years. Usually the treatment of quantum many-particle systems require supercomputers to obtain any solution.

Instead, the rigorous and exact theory employed by the theoretical team from UQ and France used a simple combination of mathematical ideas without supercomputers

The UQ theory was first published in August last year in the prestigious USA journal, the Physical Review Letters, which also recently published the NIST results.

The theory, in layman’s terms, is if a gas of a certain type of atoms is confined to a spherical container and cooled to a very low temperature all the atoms can suddenly enter into a recently discovered state of matter called a Bose-Einstein condensate.

In this state, all the atoms behave as waves and “sing in unison” like a laser beam.

In contrast to this situation, if the motion of atoms is confined to a one-dimensional line, the gas surprisingly shows richer behaviour than in a three-dimensional sphere.

Not only can the gas show laser-like behaviour, but also the atoms can try to either bunch together or to completely avoid each other, depending on the density and temperature.

As all particles in nature are either bosons or fermions, this last case demonstrates a unique and fascinating situation where one type of fundamental particle, the boson, can behave like its counterpart, the fermion.

Possible applications of the research are the development of atom lasers, high-precision interferometry and “atom-chip” devices.

The original news release can be found on the University of Queensland web-site.

Explore further: 'Smart' bandage emits phosphorescent glow for healing below

add to favorites email to friend print save as pdf

Related Stories

Modified algae enzymes enable efficient hydrogen production

Sep 25, 2014

(Phys.org) —Hydrogen as a regenerative fuel produced in gigantic water tanks full of algae, which need nothing more than sunlight to produce the promising green energy carrier: a great idea in theory, but one that fails ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Variables of nature

Sep 05, 2014

Within physics there are certain physical quantities that play a central role. These are things such as the mass of an electron, or the speed of light, or the universal constant of gravity. We aren't sure ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

3 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

7 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

11 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0