Future for clean energy lies in 'big bang' of evolution

Aug 25, 2008

Amid mounting agreement that future clean, "carbon-neutral", energy will rely on efficient conversion of the sun's light energy into fuels and electric power, attention is focusing on one of the most ancient groups of organism, the cyanobacteria. Dramatic progress has been made over the last decade understanding the fundamental reaction of photosynthesis that evolved in cyanobacteria 3.7 billion years ago, which for the first time used water molecules as a source of electrons to transport energy derived from sunlight, while converting carbon dioxide into oxygen. The light harvesting systems gave the bacteria their blue ("cyano") colour, and paved the way for plants to evolve by "kidnapping" bacteria to provide their photosynthetic engines, and for animals by liberating oxygen for them to breathe, by splitting water molecules. For humans now there is the tantalising possibility of tweaking the photosynthetic reactions of cyanobacteria to produce fuels we want such as hydrogen, alcohols or even hydrocarbons, rather than carbohydrates.

Progress at the research level has been rapid, boosting prospects of harnessing photosynthesis not just for energy but also for manufacturing valuable compounds for the chemical and biotechnology industries. Such research is running on two tracks, one aimed at genetically engineering real plants and cyanobacteria to yield the products we want, and the other to mimic their processes in artificial photosynthetic systems built with human-made components. Both approaches hold great promise and will be pursued in parallel, as was discussed at a recent workshop focusing on the photosynthetic reaction centres of cyanobacteria, organised by the European Science Foundation (ESF).

A key point noted by Eva Mari Aro, the vice-chair of the ESF conference, was that there is now universal agreement over the ability of photosynthesis to provide large amounts of clean energy in future. While the sustainable options currently pursued such as wind and tidal power will meet some requirements, they will not be able to replace fossil fuels as sources of solid energy for driving engines, nor are they likely to be capable on their own of generating enough electricity for the whole planet. Meanwhile the current generation of biofuel producing crops generally convert less than 1% of the solar energy they receive to biomass, which means they would displace too much agricultural land used for food production to be viable on a large scale. There is the potential to develop dedicated systems, whether based on cyanobacteria, plants, or artificial components, capable of much higher efficiencies, reaching 10% efficiency of solar energy conversion. This would enable enough energy and fuel to be produced for a large part of the planet's needs without causing significant loss of space for food production.

As Aro pointed out, photosynthesis evolved by cyanobacteria produced all our fossil fuels in the first place. However the rapid consumption of these fossil fuels since the industrial revolution would if continued return atmospheric carbon dioxide towards the levels at the time cyanobacteria evolved, also heating the planet up to the much higher temperatures that prevailed then. The objective now is to exploit the same reactions so that the remaining fossil fuels can be left in the ground. Among promising contenders discussed at the ESF conference was the idea of an artificial leaf that would simulate not just photosynthesis itself but also the ability of plants to regenerate themselves. This could be important, since the reactions of photosynthesis are destructive, dismantling the protein complexes where they take place, which therefore need regular reconstruction. Under a microscope, chloroplasts, the sub-cellular units where photosynthesis take place, resemble a permanent construction site, and even artificial systems would probably need some form of regenerative capability.

A future aim therefore is to build an artificial leaf-like system comprised of self-assembling nanodevices that are capable of regenerating themselves – just as in real plants or cyanobacteria. "Fundamental breakthroughs in these directions are expected on a time scale of 10 to 20 years and are recognized by the international science community as major milestones on the road to a renewable fuel," said Aro.

Such breakthroughs depend on further progress in understanding the precise structure and mechanisms of photosynthesis, in particular the protein complex known as photosystem II, which breaks down the hydrogen atoms of water into their constituent protons and electrons to carry the energy derived from sunlight onto photosystem I, leading to production of carbohydrates and ultimately also the proteins and fats required by all organisms.

Source: European Science Foundation

Explore further: New planthopper species found in southern Spain

add to favorites email to friend print save as pdf

Related Stories

Molecular snapshots of oxygen formation in photosynthesis

Jul 11, 2014

Researchers from Umeå University, Sweden, have explored two different ways that allow unprecedented experimental insights into the reaction sequence leading to the formation of oxygen molecules in photosynthesis. ...

Earth's breathable atmosphere tied to plate tectonics?

Jun 20, 2014

The rise of oxygen is one of the biggest puzzle in Earth's history. Our planet's atmosphere started out oxygen-free. Then, around 3.5 billion years ago, tiny microbes called cyanobacteria (or blue-green algae) ...

New insight into photosynthesis

May 27, 2014

The way that algae and plants respond to light has been reinterpreted based on results from experiments studying real-time structural changes in green algae. Under particular lighting conditions during photosynthesis, ...

Algal genes may boost efficiency, yield in staple crops

May 19, 2014

(Phys.org) —As humanity faces more mouths to feed thanks to a swelling global population, new research has taken a step toward employing genes from blue-green algae to improve staple crop photosynthesis ...

Natural citrus scent may produce renewable solvents, fuel

May 01, 2014

(Phys.org) —A natural citrus scent called limonene may be the key to sustainability when it comes to making fragrances, solvents and perhaps even jet fuel, according to South Dakota State University doctoral ...

Recommended for you

Bats use polarized light to navigate

2 hours ago

Scientists have discovered that greater mouse-eared bats use polarisation patterns in the sky to navigate – the first mammal that's known to do this.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

karmaFTW
2.4 / 5 (7) Aug 25, 2008
nanodevices capable of regenerating themselves...dangerous.
rufus
3.5 / 5 (6) Aug 26, 2008
What a shame it is to consider renewable fuel production for internal combustion engines.
It seems to me that whatever energy vectors are to be produced (H2, organics....) to burn them in inefficient thermal engines (let's assume 30% efficiency maximum for a petrol-driven engine) seems like such a waste.

Rather like buying -and carrying- a litre of mineral water, then pouring two thirds onto the ground before even taking a sip.

I would hope to see research concerning alternative energy conversion technologies advance in tandem with energy vector production research......for example renewable methanol/hydrogen production and fuel-cell development.
madrocketscientist
not rated yet Aug 27, 2008
Rufus

Alternative methods are advancing apace, but for at least the next 20-50 years, we will be highly dependent on the IC engine. Even if H2 fuel cells or high cap batteries were a viable replacement next year, it would still be decades before the existing fleets started to phase out enough to make the need for petrol fuels a thing of the past.