The mystery of young stars near black holes solved

Aug 22, 2008

The mystery of how young stars can form within the deep gravity of black holes has been solved by a team of astrophysicists at the Universities of St Andrews and Edinburgh.

The team, partly funded by the Science and Technology Facilities Council (STFC), made the discovery after developing computer simulations of giant clouds of gas being sucked into black holes. The new research may help scientists gain better understanding of the origin of stars and supermassive black holes in our Galaxy and the Universe. The new discovery is published in the journal Science.

Until now, scientists have puzzled over how stars could form around a black hole, since molecular clouds - the normal birth places of stars - would be ripped apart by the black hole's immense gravitational pull.

However, the new study by Professor Ian Bonnell (St Andrews) and Dr Ken Rice (Edinburgh) found that stars appear to form from an elliptical-shaped disc, the remnant of a giant gas cloud torn apart as it encounters a black hole.

The discovery of hundreds of young stars, of high masses and making oval-shaped orbits around a black hole three million times more massive than the sun, and at the centre of our Galaxy, is described as one of the most exciting recent discoveries in astrophysics.

Prof Bonnell comments "These simulations show that young stars can form in the neighbourhood of supermassive black holes as long as there is a reasonable supply of massive clouds of gas from further out in the Galaxy.

The simulations, performed on the Scottish Universities Physics Alliance (SUPA) SGI Altix supercomputer - taking over a year of computer time - followed the evolution of two separate giant gas clouds up to 100,000 times the mass of the sun, as they fell towards the supermassive black hole.

The simulations show how the clouds are pulled apart by the immense gravitational pull of the black hole. The disrupted clouds form into spiral patterns as they orbit the black hole; the spiral patterns remove motion energy from gas that passes close to the black hole and transfers it to gas that passes further out. This allows part of the cloud to be captured by the black hole while the rest escapes. In these conditions, only high mass stars are able to form and these stars inherit the eccentric orbits from the disc. These results match the two primary properties of the young stars in the centre of our Galaxy: their high mass and their eccentric orbits around the supermassive black hole.

Dr Rice comments " The crucial element was the modelling of the heating and cooling of the gas as this tells us how much mass is needed for part of the gas to have enough gravity to overcome its own gas pressure, and thus form a star. The heating is caused by the extreme compression of the cloud as it is squashed and pulled apart by the black hole. This is balanced by the cooling which requires detailed knowledge of how quickly the radiation can escape the cloud. "

Professor Bonnell concluded, “That the stars currently present around the Galaxy's supermassive black hole have relatively short lifetimes of ~10 million years, suggests that this process is likely to be repetitive. Such a steady supply of stars into the vicinity of the black hole, and a diet of gas directly accreted by the black hole, may help us understand the origin of supermassive black holes in our and other galaxies in the Universe."

This article refers to a paper published in Science: "Star Formation Around Supermassive Black Holes" (22 August 2008).

Source: Science and Technology Facilities Council

Explore further: Quest for extraterrestrial life not over, experts say

add to favorites email to friend print save as pdf

Related Stories

Supernova cleans up its surroundings

Apr 10, 2014

(Phys.org) —Supernovas are the spectacular ends to the lives of many massive stars. These explosions, which occur on average twice a century in the Milky Way, can produce enormous amounts of energy and ...

Black hole makes 'String of Pearls' clusters

Apr 01, 2014

(Phys.org) —Huge young star clusters resembling a string of pearls around a black hole in the centre of a galaxy 120 million light-years away have been discovered by researchers at Swinburne University ...

Simple, like a neutron star

Mar 25, 2014

For astrophysicists neutron stars are extremely complex astronomical objects. Research conducted with the collaboration of SISSA and published in the journal Physical Review Letters demonstrates that in cer ...

Hardy star survives supernova blast

Mar 20, 2014

(Phys.org) —When a massive star runs out fuel, it collapses and explodes as a supernova. Although these explosions are extremely powerful, it is possible for a companion star to endure the blast. A team ...

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 0

More news stories

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.