Candy-coating keeps proteins sweet

Aug 19, 2008

Sugar-frosting isn’t just for livening up boring bran flakes; it can also preserve important therapeutic proteins. Researchers at the National Institute of Standards and Technology have developed a fast, inexpensive and effective method for evaluating the sugars pharmaceutical companies use to stabilize protein-drugs for storage at room temperature. The group presented their findings at the 236th American Chemical Society National Meeting and Exposition.

Protein-based drugs such as insulin and vaccines must be stabilized after manufacturing in order to be used safely. For the past 30 years, researchers have been preserving therapeutic proteins by freeze-drying them and coating them with a thin layer of various formulations of glass-like sugars that act to stabilize their molecular structures. This allows them to be safely stored for extended periods of time.

Pharmaceutical companies, though they have general guidelines, develop their formulations essentially by trial and error and have to wait up to two years to see if the glasses are suitable. The new methods will help pharmaceutical companies make the best choice about which formulations to test and make it easier to stabilize drugs at room temperature. Room-temperature storage is vital when the pharmaceuticals are to be used in areas of the world where controlled storage conditions are not available.

The new findings build upon previous work at NIST in which the team used neutron scattering to determine that rapidly solidified sugars preserve such proteins best when they suppress molecular motions lasting a nanosecond or less. Their latest experiments center on the hydrogen bonding that makes the sugars rigid. They have shown that the lifetimes of these bond networks can be measured directly with a fluorescent probe. This method is much more convenient than using neutrons and could be used for routine formulation evaluation.

Hydrogen bonds are responsible for many of water’s properties; they make water a liquid at room temperature. All biological fluids, which are composed mostly of water, are also defined by their hydrogen bonds. Without these bonds, proteins would unfold, and life as we know it would be impossible. Sugars used to safeguard protein-based drugs act like cement, taking the place of water by bonding to the proteins and locking them in place. By rapidly freezing liquid sugar, its molecules have no time to form the usual orderly crystal patterns typically found in sugars that are solids at room temperature. Lead NIST researcher Marc Cicerone says that the randomly ordered sugar molecules fit the encased proteins like a glove, “stiffening” molecular motions that cause the proteins to chemically degrade.

Using the fluorescent probe, the team can now tell within minutes after freeze-drying the protein whether the formulation will be stable, reducing the time and expense associated with the “wait and see” method currently in use.

“Instead of needing relaxation measurements that require using neutron scattering—a national facility with limited time availability—we have developed a widely accessible solution in the form of readily available steady-state fluorescence measurements,” Cicerone says. “This will allow pharmaceutical companies to adopt the new metrology we’ve developed.”

When applied, the team’s findings should help to increase the availability of viable medicines in places where refrigeration is scarce or unavailable.

Citation: M. T. Cicerone and J. M. Johnson. Hydrogen bond network lifetime as an indicator of protein stability in pharmaceutical preparations. Biophysical & Biomolecular Symposium: Current Challenges in Protein Formulations. 236th ACS National Meeting, Philadelphia, Penn., Monday, Aug. 18, 2008.

Source: National Institute of Standards and Technology

Explore further: Researchers create engineered energy absorbing material

add to favorites email to friend print save as pdf

Related Stories

Inside the cell, an ocean of buffeting waves

Aug 14, 2014

Conventional wisdom holds that the cytoplasm of mammalian cells is a viscous fluid, with organelles and proteins suspended within it, jiggling against one another and drifting at random. However, a new biophysical ...

To watch DNA unwrap, blank out the proteins

Aug 12, 2014

Biophysics is a science of shapes – the shapes of molecules like DNA as they wrap and unwrap around protein cores, for instance. Cornell researchers have unveiled a new method for observing such processes ...

'Onion' vesicles for drug delivery developed

Jun 10, 2014

One of the defining features of cells is their membranes. Each cell's repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate ...

Findings may advance iron-rich, cadmium-free crops

May 29, 2014

With news reports of toxic cadmium-tainted rice in China, a new study describes a protein that transports metals in Arabidopsis plants and holds promise for developing iron-rich but cadmium-free crops.

Recommended for you

Researchers create engineered energy absorbing material

23 minutes ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

43 minutes ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

New tool identifies therapeutic proteins in a 'snap'

53 minutes ago

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Celebrating 100 years of crystallography

21 hours ago

To commemorate the 100th anniversary of a revolutionary technique that underpins much of modern science, Chemical & Engineering News (C&EN) magazine last week released a special edition on X-ray crystallography—its past, ...

User comments : 0