Pesticide build-up could lead to poor honey bee health

Aug 18, 2008
Penn State researchers say a suprising build up of pesticides can contribute to poor honey bee health. Photo: Annemarie Mountz.

Honey bees industriously bring pollen and nectar to the hive, but along with the bounty comes a wide variety of pesticides, according to Penn State researchers. Add the outside assault to the pesticides already in the waxy structure of the hive, and bee researchers see a problem difficult to evaluate and correct. However, an innovative approach may mitigate at least some beeswax contamination.

The researchers present their analysis of pollen, brood, adult bees and wax samples today (Aug 18) at the 236th national American Chemical Society meeting in Philadelphia. Those results show unprecedented levels of fluvalinate and coumaphos -- pesticides used in the hives to combat varroa mites -- in all comb and foundation wax samples. They also found lower levels of 70 other pesticides and metabolites of those pesticides in pollen and bees.

"Everyone figured that the acaricides (anti-varroa mite chemicals) would be present in the wax because the wax is reprocessed to form the structure of the hives," says Maryann Frazier, senior extension associate. "It was a bit of a shock to see the levels and the widespread presence of these pesticides."

While the researchers expected the presence of the chemicals available to treat varroa mites in the hives, the other pesticides' levels were also surprising. All of the bees tested showed at least one pesticide and pollen averaged six pesticides with as many as 31 in a sample.

"We already had in place ways to test for viruses, bacteria and fungi, but it was difficult to find an analytical laboratory that could analyze for unknown pesticides," says Christopher A. Mullin, professor of entomology. "We needed them to take a comprehensive look at all pesticides, not just those associated with beekeeping."

They eventually turned to the National Science Laboratory of the U.S. Department of Agricultural Marketing Service that already tests commodities such as milk and fruits and vegetables to allow them to meet national and international standards.

"When we began doing this work, honey was not regularly analyzed, and bee pollen was not a commodity and so was not analyzed," says Mullin. "We decided to go with the types of screening the lab does for milk and apples which look at over 170 pesticides. Now, honey is included in the commodities to be analyzed."

The researchers, including Roger Simonds, a chemist at the National Science Laboratory decided on a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method because it uses smaller samples. They coupled this with gas and liquid chromatography to develop methods of analyzing pollen, bees and wax.

"Simplicity was important because there were many people across the country sampling for us," says Maryann Frazier. "Now rather than having them collect 15 grams of pollen they need only collect 3 grams."

The researchers note that this method also uses less solvent and generates data in the parts per billion range.

While beekeepers will have a difficult time controlling pesticide exposure outside the hive, the researchers tested a method for reducing the acaricide load in beeswax. Using gamma radiation from a cobalt 60 source housed at Penn State's Breazeale Reactor, they irradiated the sheets of beeswax that beekeepers use as the structural foundation for the bees to build their combs. They used radiation levels at the high end of that used to irradiate foods. Irradiation broke down about 50 percent of the acaricides in the wax.

"Gamma radiation is often used to kill viruses and other disease causing agents," says James L. Frazier, professor of entomology, Penn State. "Commercial irradiation firms usually decontaminate medical instruments or foods."

The researchers tried irradiation at a commercial plant and though some modifications were necessary to irradiate the wax sheets, it is possible. Some beekeepers already irradiate their equipment to get rid of any disease causing agents. However, it might be more efficient if the wax sheet supplier irradiated their product before sale to the beekeepers.

Beekeepers cannot manage the environmental pesticide contamination as easily as the wax contamination. The U. S. Environmental Protection Agency does regulate and monitor pesticides, but they do not have the ability to monitor the interaction of these chemicals. With the large number of pesticides found in bees and pollen, interactions are likely.

"We are finding fungicides that function by inhibiting the steroid metabolism in the fungal diseases they target, but these chemicals also affect similar enzymes in other organisms," says James Frazier. "These fungicides, in combination with pyrethroids and/or neonicotinoids can sometimes have a synergistic effect 100s of times more toxic than any of the pesticides individually."

For CCD, bees are not dying in their hives, but are not returning to their hives. James Frazier notes it is difficult to observe bees outside the hive. The U.S. EPA only looks at acute exposure to individual pesticides, but chronic exposure may cause behavioral changes that are unmonitored.

"We do not know that these chemicals have anything to do with Colony Collapse Disorder, but they are definitely stressors in the home and in the food sources," says Dr. Frazier. "Pesticides alone have not shown they are the cause of CCD. We believe that it is a combination of a variety of factors, possibly including mites, viruses and pesticides."

The researchers, who also include Sara Ashcraft, research assistant, have a team uniquely suited to looking at the honey bee pesticide problem because they combine a toxicologist in Mullin, a physiologist in James Frazier and someone with connections to beekeepers across the country in Maryann Frazier.

"We now want to look at small versus large operations and organic versus nonorganic operations to see if there are differences," says Maryann Frazier.

Source: Penn State

Explore further: Proteins: New class of materials discovered

add to favorites email to friend print save as pdf

Related Stories

Developers explore game experience for the blind

14 minutes ago

Wait, researchers are talking about a video game for the blind? Come again? Not impossible. Game designers, reports the BBC, have been working on bringing the game experience to the blind and those with vision ...

Apple's freshly sliced shares climb

1 hour ago

Freshly split Apple shares closed at a high on Tuesday, with investors evidently betting the California company will debut popular new gadgets, perhaps a smart watch and an iPhone 6.

France fights back Asian hornet invader

1 hour ago

They slipped into southwest France 10 years ago in a pottery shipment from China and have since invaded more than half the country, which is fighting back with drones, poisoned rods and even chickens.

Tide turns for shark fin in China

2 hours ago

A sprawling market floor in Guangzhou was once a prime location for shark fin, one of China's most expensive delicacies. But now it lies deserted, thanks to a ban from official banquet tables and a celebrity-driven ...

Recommended for you

Proteins: New class of materials discovered

16 hours ago

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

Aug 21, 2014

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Arthur_Dent
not rated yet Aug 28, 2008
1. Colony Collapse Disorder is new/recent.

2. Pesticides have been in use for much longer.

3. Pesticide-use *changed* significantly, recently:
Before "Roundup Ready" GMO crops, pesticides were applied in small amounts, many times.

Now, however, pesticides are soaked so strongly onto the fields that EVERYTHING dies, except for the "Roundup Ready" GMO crops.

This means much less spraying for the farmers, but it also means the micro-ecology of the soil is functionally extinguished, and...

...it also coincides with the Colony Collapse Disorder.

.: Why hasn't anyone published whether the new style of pesticide-drenching is the cause of Colony Collapse Disorder?