Leishmaniasis parasites evade death by exploiting the immune response to sand fly bites

Aug 14, 2008

Cutaneous leishmaniasis, a disease characterized by painful skin ulcers, occurs when the parasite Leishmania major, or a related species, is transmitted to a mammalian host by the bite of an infected sand fly. In a new study from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, scientists have discovered L. major does its damage by not only evading but also by exploiting the body's wound-healing response to sand fly bites, as reported in the August 15 issue of Science.

"This work changes the textbook picture of the lifecycle of the leishmaniasis parasite, identifying the inflammatory cell known as the neutrophil as the predominant cell involved during the initiation of infection," says NIAID Director Anthony S. Fauci, M.D.

Employing advanced microscopy techniques, which allowed real-time imaging of the skin of living mice infected with L. major, NIAID collaborators Nathan C. Peters, Ph.D., and Jackson Egen, Ph.D., found that the neutrophils—white blood cells that ingest and destroy bacteria—play a surprising role in the development of the disease.

Neutrophils were rapidly recruited out of the circulating blood and into the skin of infected mice, where they swarmed around the sand fly bite sites and efficiently engulfed the parasites. But unlike many other infectious organisms that die inside neutrophils, L. major parasites appear to have evolved in a way to evade death, actually surviving for long periods of time inside the neutrophils. Eventually the parasites escape from neutrophils and enter macrophages, another immune cell population in the skin, where they can establish long-term infection.

"Parasites transmitted by sand flies to mice lacking neutrophils have more difficulty establishing an infection and surviving. This demonstrates the importance of neutrophils at the site of an infected sand fly bite and suggests the unexpected path taken by the parasite from sand fly to neutrophil to macrophage is a critical component of this disease," says Dr. Peters.

In addition, says Dr. Egen, the study reveals how neutrophils leave locally inflamed blood vessels and move into tissues; provides new information on the movement of these immune cells within damaged tissue environments and upon contact with pathogens; and provides video images revealing active neutrophil entry into areas of damaged skin.

Source: National Institute of Allergy and Infectious Diseases

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Dairy farms asked to consider breeding no-horn cows

Mar 28, 2015

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.