Protein key to control, growth of blood cells

Aug 13, 2008

New research sheds light on the biological events by which stem cells in the bone marrow develop into the broad variety of cells that circulate in the blood. The findings may help improve the success of bone marrow transplants and may lead to better treatments for life-threatening blood diseases.

"As we better understand the biological pathways that regulate the growth of stem cells, we may identify new approaches for treating blood disorders," said study leader Wei Tong, Ph.D., a hematology researcher at The Children's Hospital of Philadelphia. Her study appeared online July 10 in the Journal of Clinical Investigation.

Hematopoietic stem cells (HSCs) develop into all types of blood cells: red blood cells, platelets and immune cells. HSCs, like other stem cells, have the ability to self-renew: each can give rise to more mature, developed cells with more specific functions, as well as a new stem cell. (Everyone carries HSCs in their bone marrow, unlike embryonic stem cells, which exist only in embryos.)

In her study, conducted in mice, Tong focused on a protein called Lnk that helps control HSC expansion. When a growth factor in the blood called thrombopoietin (TPO) acts on its cell receptor, it triggers signals along a pathway that includes another protein, JAK2. JAK2, in turn, causes stem cells to increase their numbers.

Tong's group and others previously found that Lnk is a negative regulator for HSCs, acting as a brake on stem cell expansion. In the current study, they found that mice genetically engineered to lack the Lnk protein had 10 times the normal amount of HSCs in their bone marrow. Without Lnk to directly interact with JAK2 and inhibit its activity, TPO made stem cell production go into overdrive.

However, there was an unexpected potential benefit-- the expanded population of stem cells had a higher proportion of quiescent cells, those in a resting stage in the cell cycle. Quiescent stem cells, said Tong, are more likely to succeed in a recipient when they are used in bone marrow transplantation.

Although much research remains to be done, added Tong, other researchers might build on this knowledge to manipulate HSCs for more effective bone marrow transplants for cancer patients after high-dose chemotherapy or radiotherapy. It might also improve treatments for particular blood disorders. For example, aplastic anemia, severe combined immunodeficiency disorders and hemoglobin disorders involve deficiencies of specific immune cells in the blood. Using a drug to inhibit Lnk could potentially produce larger numbers of HSCs for a successful bone marrow transplant.

Myeloproliferative disorders (MPDs), on the other hand, entail the opposite danger—a sometimes-fatal overproduction of certain bone marrow cells. Clinicians might use Tong's research on Lnk and its associated signaling pathway to curtail stem cell production and control MPDs.

Source: Children's Hospital of Philadelphia

Explore further: Scientists discover new clues to how weight loss is regulated

add to favorites email to friend print save as pdf

Related Stories

Report: Better shields needed for private tax data

23 minutes ago

Federal investigators say the IRS and the states should improve how they protect the security of confidential tax information of people getting benefits under the 2010 health care law.

Coal-rich Poland ready to block EU climate deal

26 minutes ago

European Union leaders meeting in Brussels to set their new greenhouse gas emissions plan are facing staunch opposition from coal-reliant Poland and other East European countries who say their economies would ...

Some online shoppers pay more than others, study shows

51 minutes ago

Internet users regularly receive all kinds of personalized content, from Google search results to product recommendations on Amazon. This is thanks to the complex algorithms that produce results based on users' profiles and ...

Researchers create designer 'barrel' proteins

53 minutes ago

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

Recommended for you

Scientists discover new clues to how weight loss is regulated

48 minutes ago

A hormone seen as a popular target to develop weight-loss drugs works by directly targeting the brain and triggering previously unknown activity in the nervous system, UT Southwestern Medical Center obesity researchers have ...

Team finds key signaling pathway in cause of preeclampsia

3 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

7 hours ago

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0