Sound adds speed to visual perception

Aug 12, 2008

The traditional view of individual brain areas involved in perception of different sensory stimuli—i.e., one brain region involved in hearing and another involved in seeing—has been thrown into doubt in recent years. A new study published in the online open access journal BMC Neuroscience, shows that, in monkeys, the region involved in hearing can directly improve perception in the visual region, without the involvement of other structures to integrate the senses.

Integration of sensory stimuli has traditionally been thought of as hierarchical, involving brain areas that receive signals from distinct areas of the brain layer known as the cortex that recognise different stimuli. But the recent finding of nerve cells projecting from the auditory cortex (associated with the perception of sound) directly into the visual cortex (associated with sight), suggest that perception of one sense might affect that of another without the involvement of higher brain areas.

"Auditory or visual–auditory responses in the primary visual cortex are highly probable given the presence of direct projections from the primary auditory cortex", explain P. Barone and colleagues from the Centre for Brain and Cognition Research, Toulouse, France. "We looked for modulation of the neuronal visual responses in the primary visual cortex by auditory stimuli in an awake monkey."

The researchers recorded the neuronal responses with microelectrodes inserted directly into the primary visual cortex of a rhesus macaque. The monkey was then required to orient its gaze towards a visual stimulus. The time taken for the neurons in the visual cortex to respond to the stimulus, or latency, was recorded. Barone and colleagues then measured the latency when the visual stimulus was accompanied by a sound emanating from the same spot. When the visual signal was strong—i.e., high contrast—the auditory stimulus did not affect latency; however, if the visual signal was weaker—i.e., low contrast—latency decreased by 5-10%, suggesting that in some way the auditory stimulus speeds up the response to the visual stimulus.

"Our findings show that single neurons from one primary sensory cortex can integrate information from another sensory modality", the researchers claim. They propose that the auditory cue is processed more quickly than the visual stimulus, and because the monkeys have learned to associate that sound and sight, the visual cortex is primed to perceive the weaker signal. "Our results argue against a strict hierarchical model of sensory integration in the brain and that integration of multiple senses should be added to the list of functions of the primary visual cortex."

Source: BioMed Central

Explore further: Mutant protein in muscle linked to neuromuscular disorder

add to favorites email to friend print save as pdf

Related Stories

Google team: Self-teaching computers recognize cats

Jun 26, 2012

(Phys.org) -- At the International Conference on Machine Learning, which starts today in Edinburgh, participants will hear about Google’s results after several years’ work at their big idea laboratory, ...

The living fossils of brain evolution

May 23, 2012

(Phys.org) -- In the course of its evolution, the architecture of the mouse brain may have barely changed. Similar to the tiny ancestors of modern mammals that lived about 80 million years ago, nerve cells ...

Facebook seeks to get smarter with big data

Dec 14, 2013

Facebook is working to become your new best friend, getting to know you better by infusing the billion-member social network's software with artificial intelligence.

Facebook turns to machine learning

Dec 13, 2013

"Move fast and break things." That is the Facebook motto plastered all over their California headquarters to remind engineers never to stop innovating. This week, the company moved fast and broke some news ...

Recommended for you

Gate for bacterial toxins found

6 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.