OSU students build and launch a sensor into space

Aug 11, 2008
The high-altitude balloon carrying a radiation detector, high-resolution camera, sensors for temperature, pressure and humidity, and a GPS launches from OSU in Stillwater. Image: Dr. Jamey Jacob

Students from OSU's Radiation Physics Laboratory built and successfully launched a cosmic radiation detector this summer that reached the edge of outer space. Carried by a helium-filled balloon 12 inches in diameter, the detector flew for more than two hours and reached 104,000 feet in altitude. The device recorded radiation levels at the varying altitudes – information that will be used by NASA to develop instrumentation for space flight.

"This is really amazing," said Carl Johnson, a physics graduate student who designed and constructed the device. "Our detector actually flew to the edge of outer space and then back to ground, and the whole time it worked perfectly."

In addition to the radiation sensor, the balloon carried a high-resolution camera, sensors for temperature, pressure and humidity, and a GPS module to determine altitude and geographic position. The balloon and instrumentation launched from the Stillwater campus and landed about 10 miles away in Perry. OSU engineering graduate and undergraduate students Joe Conner, Xander Buck and Ryan Paul conducted the launch.

Funded through a NASA EPSCoR grant, this project was overseen by Drs. Eric Benton and Eduardo Yuihara of the OSU physics department and Dr. Andy Arena of OSU department of mechanical and aerospace engineering. Art Lucas of Lucas Newman Science and Technologies also assisted on the design and development of the radiation detector.

Benton said the purpose of the grant is two-fold.

"The purpose of the grant is not only to develop instrumentation for use in space flight but also to promote student interest in science and engineering through experiments with high-altitude balloons," he said. "The best part about the project is that the detector was built from everyday materials and launched into near space from right here in our own backyard. This proves you can accomplish really amazing things with simple materials."

The detector serves as a prototype for radiation detectors that will be included in the Near Space Standard Science Platform, a program used by science students at high schools and colleges around the country conducting research on high-altitude balloons.

Source: Oklahoma State University

Explore further: Brief moon eclipse coming April 4

Related Stories

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Mission studies the Sun in soft X-rays

Mar 24, 2015

At any given moment, our sun emits a range of light waves far more expansive than what our eyes alone can see: from visible light to extreme ultraviolet to soft and hard X-rays. Different wavelengths can ...

Ensuring food safety using space technology

Mar 09, 2015

A team led by Marco Casolino of the RIKEN Global Research Cluster's EUSO Team and Masayuki Goto of G-Tech corporation, a private company engaged in the development of radiation measurement equipment, have ...

Carina Nebula survey reveals details of star formation

Mar 09, 2015

A new Rice University-led survey of one of the most active star-forming regions in the galactic neighborhood is helping astronomers better understand the processes that may have contributed to the formation ...

Recommended for you

Brief moon eclipse coming April 4

49 minutes ago

A brief total eclipse of the Moon may be visible on April 4 to skywatchers in western North America, Australia and East Asia, astronomers say.

Total lunar eclipse before dawn on April 4th

21 hours ago

An unusually brief total eclipse of the Moon will be visible before dawn this Saturday, April 4th, from western North America. The eclipse happens on Saturday evening for Australia and East Asia.

Cassini: Return to Rhea

Mar 30, 2015

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

Comet dust—planet Mercury's 'invisible paint'

Mar 30, 2015

A team of scientists has a new explanation for the planet Mercury's dark, barely reflective surface. In a paper published in Nature Geoscience, the researchers suggest that a steady dusting of carbon from p ...

It's 'full spin ahead' for NASA soil moisture mapper

Mar 30, 2015

The 20-foot (6-meter) "golden lasso" reflector antenna atop NASA's new Soil Moisture Active Passive (SMAP) observatory is now ready to wrangle up high-resolution global soil moisture data, following the successful ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

nilbud
1 / 5 (1) Aug 13, 2008
30Km is not anywhere near the edge of outer space, perhaps the student needs to study some more and play with balloons less. This kind of project should be undertaken by primary students, it seems pathetic for university level.
jatkins
not rated yet Sep 11, 2008
There is no strict definition for "the edge of space", but 30 km is perfectly fair. It's above 99% of the atmopshere, and just 70 km below the Karman line. The enviroment at that altitude is of extreme temperature (~-55C) and is a near vacuum; there's a reason it's termed "near space".

It's an awesome project that certainly couldn't be undertaken by primary school students (probably not even secondary). They're producing extremely useful data with a great experiment.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.