Vegas 'Quantum Spookshow' Demos On-the-Fly Encryption of Streaming Video

Aug 06, 2008

Las Vegas shows often are on the cutting edge. Following this tradition, researchers from the National Institute of Standards and Technology (NIST) and their colleagues at the National University of Singapore (NUS) have landed gigs this week at Caesar's Palace and the Riviera Hotel and Casino to perform live demonstrations of quantum cryptography, theoretically the most secure form of encryption.

Appearing at two major venues of the information security industry, known as the Black Hat and DEFCON meetings,* the researchers will showcase the increasing practicality of quantum cryptography.

In the NIST portion of the "Quantum Spookshow," an exhibit-hall demonstration presented with NUS, a web cam will capture live video, scramble it using quantum cryptography, and broadcast the decrypted video. The bit rate of the quantum-encrypted video is targeted to exceed 300,000 bits per second (bps), a quality higher than that of popular video-sharing Web sites. The NUS group will demonstrate a reduced-size next-generation quantum cryptography system that uses pairs of interlinked or "entangled" photons and very simple hardware.

Aptly enough for the City of Lights, these two systems employ photons—particles of light—to create the secret key, a random series of digital bits, each representing 0 or 1, which is used to encrypt and decrypt messages in real time. In the NIST high-speed wireless setup, an infrared laser generates the photons while small telescopes with 8-inch mirrors send and receive the photons over the air. The system uses the most secure version of quantum key distribution (QKD), known as the "one-time pad," in which one bit of key is produced for every bit of video that is transmitted.

Once a secret key is created, it is used to encrypt video data, which then are sent over an Ethernet cable. The data are decrypted by a receiver in real time using PC-compatible circuit boards designed and built at NIST. With a transmission capability of up to a billion bps, the NIST system makes QKD practical for encrypting streaming video and other applications.

Nonetheless, there are points of weakness in any quantum cryptography system. At the demonstrations, participants will have a chance to discover vulnerabilities through hands-on interactions with the systems. In NIST's simplified setup, participants can put a filter in front of the telescopes, causing error rates to skyrocket and making it impossible to generate enough key to encrypt video. Identifying subtler security loopholes in real-world environments is a major research objective of practical quantum cryptography. Participants are invited to find and discuss security loopholes in the system: the NUS group has made their code open source, and it can be found at .

The NIST work in this field was supported by the Defense Advanced Research Projects Agency, and includes researchers who work at the Joint Quantum Institute, a research partnership of NIST and the University of Maryland. The NUS component was supported by Singapore's Centre for Quantum Technologies and its Defense Science and Technology Agency (DSTA).

* Quantum Spookshow, at Black Hat Briefings, Caesar's Palace, Wednesday, Aug. 6, 1:30-7:30 p.m., and Thursday, Aug. 7, from 12:00 to 6:00 p.m.. At Defcon 16, Riviera Hotel and Casino, Friday, Aug. 8, and Saturday, Aug. 9. Also: Joshua Bienfang, "Free-Space Quantum Key Distribution at GHz Transmission Rates," Turbo Talk at Black Hat Briefings, Thursday, Aug. 7, 4:45 p.m.

Provided by NIST

Explore further: New method for non-invasive prostate cancer screening

add to favorites email to friend print save as pdf

Related Stories

New quantum key system combines speed, distance

Jun 09, 2007

Researchers at NIST have built a prototype high-speed quantum key distribution system, based on a new detector system that achieves dramatically lower noise levels than similar systems.

Recommended for you

New method for non-invasive prostate cancer screening

11 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

12 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

13 hours ago

( —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

17 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0