Vegas 'Quantum Spookshow' Demos On-the-Fly Encryption of Streaming Video

Aug 06, 2008

Las Vegas shows often are on the cutting edge. Following this tradition, researchers from the National Institute of Standards and Technology (NIST) and their colleagues at the National University of Singapore (NUS) have landed gigs this week at Caesar's Palace and the Riviera Hotel and Casino to perform live demonstrations of quantum cryptography, theoretically the most secure form of encryption.

Appearing at two major venues of the information security industry, known as the Black Hat and DEFCON meetings,* the researchers will showcase the increasing practicality of quantum cryptography.

In the NIST portion of the "Quantum Spookshow," an exhibit-hall demonstration presented with NUS, a web cam will capture live video, scramble it using quantum cryptography, and broadcast the decrypted video. The bit rate of the quantum-encrypted video is targeted to exceed 300,000 bits per second (bps), a quality higher than that of popular video-sharing Web sites. The NUS group will demonstrate a reduced-size next-generation quantum cryptography system that uses pairs of interlinked or "entangled" photons and very simple hardware.

Aptly enough for the City of Lights, these two systems employ photons—particles of light—to create the secret key, a random series of digital bits, each representing 0 or 1, which is used to encrypt and decrypt messages in real time. In the NIST high-speed wireless setup, an infrared laser generates the photons while small telescopes with 8-inch mirrors send and receive the photons over the air. The system uses the most secure version of quantum key distribution (QKD), known as the "one-time pad," in which one bit of key is produced for every bit of video that is transmitted.

Once a secret key is created, it is used to encrypt video data, which then are sent over an Ethernet cable. The data are decrypted by a receiver in real time using PC-compatible circuit boards designed and built at NIST. With a transmission capability of up to a billion bps, the NIST system makes QKD practical for encrypting streaming video and other applications.

Nonetheless, there are points of weakness in any quantum cryptography system. At the demonstrations, participants will have a chance to discover vulnerabilities through hands-on interactions with the systems. In NIST's simplified setup, participants can put a filter in front of the telescopes, causing error rates to skyrocket and making it impossible to generate enough key to encrypt video. Identifying subtler security loopholes in real-world environments is a major research objective of practical quantum cryptography. Participants are invited to find and discuss security loopholes in the system: the NUS group has made their code open source, and it can be found at code.google.com/p/qcrypto .

The NIST work in this field was supported by the Defense Advanced Research Projects Agency, and includes researchers who work at the Joint Quantum Institute, a research partnership of NIST and the University of Maryland. The NUS component was supported by Singapore's Centre for Quantum Technologies and its Defense Science and Technology Agency (DSTA).

* Quantum Spookshow, at Black Hat Briefings, Caesar's Palace, Wednesday, Aug. 6, 1:30-7:30 p.m., and Thursday, Aug. 7, from 12:00 to 6:00 p.m.. At Defcon 16, Riviera Hotel and Casino, Friday, Aug. 8, and Saturday, Aug. 9. Also: Joshua Bienfang, "Free-Space Quantum Key Distribution at GHz Transmission Rates," Turbo Talk at Black Hat Briefings, Thursday, Aug. 7, 4:45 p.m.

Provided by NIST

Explore further: Infrared imaging technique operates at high temperatures

add to favorites email to friend print save as pdf

Related Stories

Drought sees Rio's main hydro plant turned off

7 hours ago

A major Rio hydroelectric power plant was switched off after water levels slipped below an operational minimum following severe drought, Brazil's national grid told AFP on Thursday.

Recommended for you

Infrared imaging technique operates at high temperatures

Jan 23, 2015

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

Football physics and the science of Deflategate

Jan 23, 2015

News reports say that 11 of the 12 game balls used by the New England Patriots in their AFC championship game against the Indianapolis Colts were deflated, showing about 2 pounds per square inch (psi) less ...

Physicists find a new way to slow the speed of light

Jan 23, 2015

(Phys.org)—A team of physicists working at the University of Glasgow has found a way to slow the speed of light that does not involve running it through a medium such as glass or water. Instead, as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.