Globular clusters tell tale of star formation in nearby galaxy metropolis

Aug 05, 2008
These images taken by the NASA/ESA Hubble Space Telescope show four members of the Virgo cluster of galaxies, the nearest large galaxy cluster to Earth. They are part of a survey of globular star clusters in 100 of Virgo's galaxies. Globular clusters, dense bunches of hundreds of thousands of stars, have some of the oldest surviving stars in the universe. Most of the star clusters in the Virgo survey are older than 5 billion years. The Hubble study found evidence that these hardy pioneers are more likely to form in dense areas, where star birth occurs at a rapid rate, instead of uniformly from galaxy to galaxy. Hubble's "eye" is so sharp that it was able to pick out the fuzzy globular clusters, which, at that distance, look like individual stars bunched up around the galaxies, instead of groupings of stars. Comprised of over 2,000 galaxies, the Virgo cluster is located about 54 million light-years away. Astronomers made these composite images from the advanced camera's full field-of-view observations. They also used modeling data to fill in a narrow gap between the camera's detectors. The images were taken from December 2002 to December 2003. Credit: ESA, NASA and E. Peng (Peking University, Beijing)

Globular star clusters, dense bunches of hundreds of thousands of stars, contain some of the oldest surviving stars in the Universe. A new international study of globular clusters outside our Milky Way Galaxy has found evidence that these hardy pioneers are more likely to form in dense areas, where star birth occurs at a rapid rate, instead of uniformly from galaxy to galaxy.

Astronomers used the NASA/ESA Hubble Space Telescope to identify over 11 000 globular clusters in the Virgo cluster of galaxies, most of which are more than 5 billion years old. Comprised of over 2 000 galaxies, the Virgo cluster is located about 54 million light-years away and is the nearest large galaxy cluster to Earth. Along with Virgo, the sharp vision of Hubble's Advanced Camera for Surveys (ACS) resolved the star clusters in 100 galaxies of various sizes, shapes, and brightness – even in faint, dwarf galaxies.

"It's hard to distinguish globular clusters from stars and galaxies using ground-based telescopes", explained Eric Peng of Peking University in Beijing, China, and lead author of the Hubble study.

Hubble's "eye" is so sharp that it was able to pick out the fuzzy globular clusters from stars in our galaxy and from faraway galaxies in the background. "With Hubble we were able to identify and study about 90 percent of the globular clusters in all our observed fields. This was crucial for dwarf galaxies that have only a handful of star clusters".

The team found a bounty of globular clusters (from a few dozen to several dozen) in most of the dwarf galaxies within 3 million light-years of the cluster's centre. This happens to be the same region where the giant elliptical galaxy Messier 87 resides. These numbers were surprisingly high considering the low masses of the dwarfs they inhabited. By contrast, dwarfs in the outskirts of the cluster had fewer globulars.

"Our study shows that the efficiency of star cluster formation depends on the environment", said Patrick Cote of the Herzberg Institute of Astrophysics in Victoria, Canada. "Dwarf galaxies closest to Virgo's crowded centre contained more globular clusters than those farther away".

Astronomers have long known that the giant elliptical galaxy at the cluster's centre, Messier 87, also hosts a larger than predicted population of globular star clusters. However, the origin of so many globulars has been a long-standing mystery. Astronomers have theorised that many of the clusters may have been snatched from smaller galaxies that ventured too close to it.

"We found few or no globular clusters in galaxies within 130 000 light-years from Messier 87, suggesting the giant galaxy stripped the smaller ones of their star clusters", Peng said. "These smaller galaxies are contributing to the buildup of Messier 87".

Evidence of Messier 87's galactic cannibalism comes from an analysis of the globular clusters' composition. "In Messier 87 there are three times as many globulars deficient in heavy elements, such as iron, than globulars rich in those elements", Peng said. "This suggests that many of these 'metal-poor' star clusters may have been stolen from nearby dwarf galaxies, which also contain globulars deficient in heavy elements".

Studying globular star clusters is critical to understanding the early, intense star-forming episodes that mark galaxy formation. They are known to reside in all but the faintest of galaxies.

"Star formation near the core of Virgo is very intense and occurs in a small volume over a short amount of time", Peng noted. "It may be more rapid and more efficient than star formation in the outskirts. The high star-formation rate may be driven by the gravitational collapse of dark matter, an invisible form of matter, which is denser and collapses sooner near the cluster's centre. Messier 87 sits at the centre of a large concentration of dark matter, and all of these globulars near the centre probably formed early in the history of the Virgo cluster."

The smaller number of globular clusters in the dwarf galaxies sitting farther away from the centre may be due to the masses of the star clusters that formed, Peng said. "Star formation farther away from the central region was not as robust, which may have produced only less massive star clusters that dissipated over time", he explained.

The astronomers also obtained accurate distances to 84 of the 100 galaxies in the Hubble study.

The results appeared on 1 July 2008 in The Astrophysical Journal.

Source: ESA/Hubble Information Centre

Explore further: Mysterious molecules in space

add to favorites email to friend print save as pdf

Related Stories

Fermi finds a 'transformer' pulsar

Jul 22, 2014

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

How to uncover the true face of atomic nuclei?

Jul 10, 2014

Protons and neutrons are the basic constituents of atomic nuclei. Are they distributed homogeneously, or perhaps in quartets consisting of two protons and two neutrons? Physicists from Poland and Spain have ...

Recommended for you

Astronomers measure weight of galaxies, expansion of universe

19 minutes ago

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

11 hours ago

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

Jul 28, 2014

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

Question
4 / 5 (1) Aug 05, 2008
Can anyone explain how star cluster can remain stable for billions of years?
Why haven't they collapsed gravitationally into blackholes and disappeared eons ago?
E_L_Earnhardt
1 / 5 (1) Aug 05, 2008
The first stars were powered by dark matter!
TimESimmons
1 / 5 (1) Aug 06, 2008
To Question. An explanation for globular clusters:-

http://www.presto...ndex.htm
vidyunmaya
1 / 5 (2) Aug 06, 2008
Clear our Minds-Project Data-Interpretation
with Comprehension of the Universe. At this scale, question of gravity super-imposition is wrong and misleading.Stability of an elleptical Body- say Cosmic Pot -becomes a drive.
Less mass, more Energy and naturally a sequence through Globular Clusters - Spherical mode formations- Then comes Spiral mode flows .
This sequence is identified clearly by author in Universal Plama Energy Model- 1991 and
Vidyardhi nanduri ,May 2003,Cosmic Pot Energy: New Projections sd [dot] stsci [dot] edu/astrophysical_laboratory/proceedings [dot] html. Book: VIDYARDHI NANDURI Search beyond Dark Matter-Tamasoma Jyothirgamyam TXU 1-282-571 JUNE 2005
vidyunmaya
1 / 5 (1) Aug 06, 2008
Sub: FIELD UNIVERSE LINKS- Cosmology Vedas
COSMOLOGY VEDAS-Interlinks-FREE DOWNLOAD : http://www.buymye...kId=1422
http://www.earthp...ri3.html