Globular clusters tell tale of star formation in nearby galaxy metropolis

Aug 05, 2008
These images taken by the NASA/ESA Hubble Space Telescope show four members of the Virgo cluster of galaxies, the nearest large galaxy cluster to Earth. They are part of a survey of globular star clusters in 100 of Virgo's galaxies. Globular clusters, dense bunches of hundreds of thousands of stars, have some of the oldest surviving stars in the universe. Most of the star clusters in the Virgo survey are older than 5 billion years. The Hubble study found evidence that these hardy pioneers are more likely to form in dense areas, where star birth occurs at a rapid rate, instead of uniformly from galaxy to galaxy. Hubble's "eye" is so sharp that it was able to pick out the fuzzy globular clusters, which, at that distance, look like individual stars bunched up around the galaxies, instead of groupings of stars. Comprised of over 2,000 galaxies, the Virgo cluster is located about 54 million light-years away. Astronomers made these composite images from the advanced camera's full field-of-view observations. They also used modeling data to fill in a narrow gap between the camera's detectors. The images were taken from December 2002 to December 2003. Credit: ESA, NASA and E. Peng (Peking University, Beijing)

Globular star clusters, dense bunches of hundreds of thousands of stars, contain some of the oldest surviving stars in the Universe. A new international study of globular clusters outside our Milky Way Galaxy has found evidence that these hardy pioneers are more likely to form in dense areas, where star birth occurs at a rapid rate, instead of uniformly from galaxy to galaxy.

Astronomers used the NASA/ESA Hubble Space Telescope to identify over 11 000 globular clusters in the Virgo cluster of galaxies, most of which are more than 5 billion years old. Comprised of over 2 000 galaxies, the Virgo cluster is located about 54 million light-years away and is the nearest large galaxy cluster to Earth. Along with Virgo, the sharp vision of Hubble's Advanced Camera for Surveys (ACS) resolved the star clusters in 100 galaxies of various sizes, shapes, and brightness – even in faint, dwarf galaxies.

"It's hard to distinguish globular clusters from stars and galaxies using ground-based telescopes", explained Eric Peng of Peking University in Beijing, China, and lead author of the Hubble study.

Hubble's "eye" is so sharp that it was able to pick out the fuzzy globular clusters from stars in our galaxy and from faraway galaxies in the background. "With Hubble we were able to identify and study about 90 percent of the globular clusters in all our observed fields. This was crucial for dwarf galaxies that have only a handful of star clusters".

The team found a bounty of globular clusters (from a few dozen to several dozen) in most of the dwarf galaxies within 3 million light-years of the cluster's centre. This happens to be the same region where the giant elliptical galaxy Messier 87 resides. These numbers were surprisingly high considering the low masses of the dwarfs they inhabited. By contrast, dwarfs in the outskirts of the cluster had fewer globulars.

"Our study shows that the efficiency of star cluster formation depends on the environment", said Patrick Cote of the Herzberg Institute of Astrophysics in Victoria, Canada. "Dwarf galaxies closest to Virgo's crowded centre contained more globular clusters than those farther away".

Astronomers have long known that the giant elliptical galaxy at the cluster's centre, Messier 87, also hosts a larger than predicted population of globular star clusters. However, the origin of so many globulars has been a long-standing mystery. Astronomers have theorised that many of the clusters may have been snatched from smaller galaxies that ventured too close to it.

"We found few or no globular clusters in galaxies within 130 000 light-years from Messier 87, suggesting the giant galaxy stripped the smaller ones of their star clusters", Peng said. "These smaller galaxies are contributing to the buildup of Messier 87".

Evidence of Messier 87's galactic cannibalism comes from an analysis of the globular clusters' composition. "In Messier 87 there are three times as many globulars deficient in heavy elements, such as iron, than globulars rich in those elements", Peng said. "This suggests that many of these 'metal-poor' star clusters may have been stolen from nearby dwarf galaxies, which also contain globulars deficient in heavy elements".

Studying globular star clusters is critical to understanding the early, intense star-forming episodes that mark galaxy formation. They are known to reside in all but the faintest of galaxies.

"Star formation near the core of Virgo is very intense and occurs in a small volume over a short amount of time", Peng noted. "It may be more rapid and more efficient than star formation in the outskirts. The high star-formation rate may be driven by the gravitational collapse of dark matter, an invisible form of matter, which is denser and collapses sooner near the cluster's centre. Messier 87 sits at the centre of a large concentration of dark matter, and all of these globulars near the centre probably formed early in the history of the Virgo cluster."

The smaller number of globular clusters in the dwarf galaxies sitting farther away from the centre may be due to the masses of the star clusters that formed, Peng said. "Star formation farther away from the central region was not as robust, which may have produced only less massive star clusters that dissipated over time", he explained.

The astronomers also obtained accurate distances to 84 of the 100 galaxies in the Hubble study.

The results appeared on 1 July 2008 in The Astrophysical Journal.

Source: ESA/Hubble Information Centre

Explore further: New mass map of a distant galaxy cluster is the most precise yet

add to favorites email to friend print save as pdf

Related Stories

How to uncover the true face of atomic nuclei?

Jul 10, 2014

Protons and neutrons are the basic constituents of atomic nuclei. Are they distributed homogeneously, or perhaps in quartets consisting of two protons and two neutrons? Physicists from Poland and Spain have ...

Reinterpreting dark matter

Jul 02, 2014

Tom Broadhurst, an Ikerbasque researcher at the University of the Basque Country (UPV/EHU), has participated alongside scientists of the National Taiwan University in a piece of research that explores cold ...

Merging galaxies illuminate the cosmic food chain

Jul 01, 2014

(Phys.org) —Scientists studying a 'twin' of the Milky Way have used the W. M. Keck Observatory and Subaru Observatory to accurately model how it is swallowing another, smaller galaxy. Their findings have ...

Recommended for you

Satellite galaxies put astronomers in a spin

4 hours ago

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

Video: The diversity of habitable zones and the planets

4 hours ago

The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization is the determination of which planets occupy the Habitable ...

Ultra-deep astrophoto of the Antenna Galaxies

4 hours ago

You might think the image above of the famous Antenna Galaxies was taken by a large ground-based or even a space telescope. Think again. Amateur astronomer Rolf Wahl Olsen from New Zealand compiled a total ...

The most precise measurement of an alien world's size

6 hours ago

Thanks to NASA's Kepler and Spitzer Space Telescopes, scientists have made the most precise measurement ever of the radius of a planet outside our solar system. The size of the exoplanet, dubbed Kepler-93b, ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

Question
4 / 5 (1) Aug 05, 2008
Can anyone explain how star cluster can remain stable for billions of years?
Why haven't they collapsed gravitationally into blackholes and disappeared eons ago?
E_L_Earnhardt
1 / 5 (1) Aug 05, 2008
The first stars were powered by dark matter!
TimESimmons
1 / 5 (1) Aug 06, 2008
To Question. An explanation for globular clusters:-

http://www.presto...ndex.htm
vidyunmaya
1 / 5 (2) Aug 06, 2008
Clear our Minds-Project Data-Interpretation
with Comprehension of the Universe. At this scale, question of gravity super-imposition is wrong and misleading.Stability of an elleptical Body- say Cosmic Pot -becomes a drive.
Less mass, more Energy and naturally a sequence through Globular Clusters - Spherical mode formations- Then comes Spiral mode flows .
This sequence is identified clearly by author in Universal Plama Energy Model- 1991 and
Vidyardhi nanduri ,May 2003,Cosmic Pot Energy: New Projections sd [dot] stsci [dot] edu/astrophysical_laboratory/proceedings [dot] html. Book: VIDYARDHI NANDURI Search beyond Dark Matter-Tamasoma Jyothirgamyam TXU 1-282-571 JUNE 2005
vidyunmaya
1 / 5 (1) Aug 06, 2008
Sub: FIELD UNIVERSE LINKS- Cosmology Vedas
COSMOLOGY VEDAS-Interlinks-FREE DOWNLOAD : http://www.buymye...kId=1422
http://www.earthp...ri3.html