A mechanism for the development of obesity-associated conditions

Aug 03, 2008

Substances known as endocannabinoids have been implicated in the development of many effects of a high-fat diet, including risk factors for type 2 diabetes. New data have now indicated that these effects of endocannabinoids occur via activation of the protein CB1 in the liver and not the brain. Therefore, targeting liver CB1 might provide an effective way to treat obesity-related medical conditions without the side effects of targeting CB1 in the brain, anxiety and depression.

Endocannabinoids are substances produced by several cells in the body that are very similar to compounds found in cannabis plants. They have been implicated in the development of many effects of a high-fat diet, including many risk factors for type 2 diabetes: obesity, insulin resistance, leptin resistance, and dyslipidemia.

It is important to determine whether these effects of endocannabinoids occur via activation of the protein CB1 in the brain, liver, or other tissues, as the therapeutic potential of agents that target CB1 is currently limited by the side effects of targeting CB1 in the brain, anxiety and depression. However, new insight into this issue has now been provided by George Kunos and colleagues, at the National Institutes of Health, Rockville, through analysis of mice lacking CB1 only in the liver.

Similar to normal mice, when the mice lacking CB1 only in the liver were fed a high-fat diet they became obese. However, they exhibited less severe insulin resistance, leptin resistance, and dyslipidemia than the normal mice. They also exhibited less severe high fat diet–induced fatty liver, something that increases the risk of developing cirrhosis of the liver.

The data indicate that high fat diet–induced obesity is influenced by CB1 found in tissues other than the liver and that liver-specific CB1 is necessary for the development of high fat diet–induced fatty liver and the hormonal and metabolic changes that occur as a result of such a diet, increasing the risk of type 2 diabetes. The authors therefore suggest that targeting liver CB1 might provide an effective way to treat obesity-related medical conditions without the side effects of targeting CB1 in the brain.

Source: Journal of Clinical Investigation

Explore further: Human brain has coping mechanism for dehydration

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

11 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

13 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

14 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Recommended for you

Diet affects men's and women's gut microbes differently

3 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

5 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

7 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 0