Survival of the fittest: even cancer cells follow the laws of evolution

Aug 01, 2008

Scientists from The Institute of Advanced Studies at Princeton and the University of California discovered that the underlying process in tumor formation is the same as for life itself—evolution. After analyzing a half million gene mutations, the researchers found that although different gene mutations control different cancer pathways, each pathway was controlled by only one set of gene mutations. This suggests that a molecular "survival of the fittest" scenario plays out in every living creature as gene mutations strive for ultimate survival through cancerous tumors.

This finding, which appears in the August 2008 issue of The FASEB Journal, improves our understanding of how evolution shapes life in all forms, while laying a foundation for new cancer drugs and treatments.

"This study lays the groundwork for understanding the nature of different mutations in cancers," said Chen-Hsiang Yeung, first author of the study, "and helps with understanding the mechanisms of cancers and their responses to drug treatments."

To arrive at these conclusions, researchers analyzed about 500,000 cancer mutation records from the Catalog of Somatic Mutations in Cancer database and then divided the data into 45 tissue types. Within each tissue type, they calculated the frequency that multiple genes were mutated in the same sample. They identified the frequencies of mutations that were significantly higher or lower than if the genes had mutated independently. Then they mapped out how these genes ultimately lead to cancerous tumors and checked whether the genes occurring in specific tissues used the same or different cancer pathways.

"Little could Darwin have known that his 'Origin of the Species' would one day explain the 'Origin of the Tumor,'" said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. "This research report completely changes our understanding of the many gene mutations that cause cancer."

Source: Federation of American Societies for Experimental Biology

Explore further: Experts 'grasping at straws' to save near-extinct rhino

add to favorites email to friend print save as pdf

Related Stories

Research reveals structure of key CRISPR complex

Dec 10, 2014

Using a gene-editing system originally developed to delete specific genes, MIT researchers have now shown that they can reliably turn on any gene of their choosing in living cells.

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Signaling molecule crucial to stem cell reprogramming

Nov 20, 2014

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with ...

Recommended for you

'Hairclip' protein mechanism explained

5 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

menkaur
not rated yet Aug 05, 2008
isn't THAT obvious?
did he really get to publish such an obvious thing??

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.