Survival of the fittest: even cancer cells follow the laws of evolution

Aug 01, 2008

Scientists from The Institute of Advanced Studies at Princeton and the University of California discovered that the underlying process in tumor formation is the same as for life itself—evolution. After analyzing a half million gene mutations, the researchers found that although different gene mutations control different cancer pathways, each pathway was controlled by only one set of gene mutations. This suggests that a molecular "survival of the fittest" scenario plays out in every living creature as gene mutations strive for ultimate survival through cancerous tumors.

This finding, which appears in the August 2008 issue of The FASEB Journal, improves our understanding of how evolution shapes life in all forms, while laying a foundation for new cancer drugs and treatments.

"This study lays the groundwork for understanding the nature of different mutations in cancers," said Chen-Hsiang Yeung, first author of the study, "and helps with understanding the mechanisms of cancers and their responses to drug treatments."

To arrive at these conclusions, researchers analyzed about 500,000 cancer mutation records from the Catalog of Somatic Mutations in Cancer database and then divided the data into 45 tissue types. Within each tissue type, they calculated the frequency that multiple genes were mutated in the same sample. They identified the frequencies of mutations that were significantly higher or lower than if the genes had mutated independently. Then they mapped out how these genes ultimately lead to cancerous tumors and checked whether the genes occurring in specific tissues used the same or different cancer pathways.

"Little could Darwin have known that his 'Origin of the Species' would one day explain the 'Origin of the Tumor,'" said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. "This research report completely changes our understanding of the many gene mutations that cause cancer."

Source: Federation of American Societies for Experimental Biology

Explore further: Battling superbugs with gene-editing system

add to favorites email to friend print save as pdf

Related Stories

Team makes scientific history with new cellular connection

Sep 11, 2014

Researchers led by Dr. Helen McNeill at the Lunenfeld-Tanenbaum Research Institute have revealed an exciting and unusual biochemical connection. Their discovery has implications for diseases linked to mitochondria, ...

Cellular RNA can template DNA repair in yeast

Sep 03, 2014

The ability to accurately repair DNA damaged by spontaneous errors, oxidation or mutagens is crucial to the survival of cells. This repair is normally accomplished by using an identical or homologous intact ...

Recommended for you

Battling superbugs with gene-editing system

9 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

menkaur
not rated yet Aug 05, 2008
isn't THAT obvious?
did he really get to publish such an obvious thing??