Putting a virtual doctor in the ambulance

Jul 29, 2008

(PhysOrg.com) -- A new ambulance communications system will enable doctors to diagnose and begin treating critically ill patients before they reach hospital.

Diagnosing and treating a critically ill or injured patient as early as possible can mean the difference between life and death. A new communications system between a moving ambulance and its hospital base allows the simultaneous transmission of bandwidth-hungry video and ultra-sonic images, telephone communications and patient data, all at the same time.

Medical teams can therefore gather vital and detailed information about the patient’s condition and advise the ambulance team on patient treatment as they rush towards the hospital.

The ambulances transmit and receive high-quality data over wimax, a microwave access technology that can deliver data at up to 75 megabits per second over a range of 70km between fixed points (802.16.d), or its mobile version can provide 15mb/s over a four-kilometre radius (802.16.e).

“If you are transmitting data in high quality, it is very important that you don’t lose any bit of information,” says Enrico Angori, a leading researcher on the WEIRD project. WiMAX is the cheapest channel to use and the channel that can deliver the best quality of service.”

WiMAX is not new, but the research team on the EU-funded WEIRD project extended the resilience and flexibility of the WiMAX technology and created a user-friendly package that can easily be used in ambulances by non-computer specialists.

Practical and usable solutions

“The main part of our work is to make it easy for end-users to make use of the benefits of new technologies like WiMAX,” explains Giuseppe Martufi, another member of the WEIRD research team.

The team achieve this by developing software that hides the complexity of the configuration of the end-to-end communication channel, whatever the different equipment or different versions of WiMAX used. It means that the paramedic onboard the ambulance can quickly and easily establish an end-to-end communication path without specialist training, allowing them to concentrate on what they do best - saving lives.

Bandwidth can be reserved for the ambulance’s critical communications using a protocol called DIAMETER that identifies data traffic and prioritises it, ensuring communications are not blocked by low-priority data traffic, such as emails.

Seamless end-to-end connections

One of the most important features of the ambulance communications system is its ability to create end-to-end links between two points by seamlessly integrating the WiMAX signal with the other wireless communication technologies encountered, such as mobile telephony.

The WEIRD researchers developed software that takes advantage of the features of ‘next-generation networks’. NGNs layer information, decoupling the applications from the underlying transport stratum. Whatever the underlying network, the ambulance’s signals will be passed seamlessly, end to end.

A few years ago, developers had envisaged global WiMAX networks replacing our present communications infrastructures. Increasingly, WiMAX is being viewed as a complementary technology to existing wireless communication access channels.

So, the successful seamless integration of WiMAX with ‘media-independent handover’ is an important step forward.

Not all applications are designed to run on NGNs. For these, the research team built a series of adaptors - known as WEIRD agents or WEIRD application programming interfaces. WEIRD agents allow non-NGN applications to take advantage of the enhanced quality of service and seamless mobility features offered by the ambulance communications system.

WEIRD received funding from the EU's Sixth Framework Programme for research.

This is one of a series of three articles on the WEIRD project. See also 'Spotting tomorrow's forest fires' and 'Monitoring agains another Pompeii'.

This video is not supported by your browser at this time.

Provided by ICT Results

Explore further: Philips introduces BlueTouch, PulseRelief control for pain relief

add to favorites email to friend print save as pdf

Related Stories

New camera sheds light on mate choice of swordtail fish

15 minutes ago

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in ...

Making quantum dots glow brighter

1 hour ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

Recommended for you

Nanoscience makes your wine better

10 hours ago

One sip of a perfectly poured glass of wine leads to an explosion of flavours in your mouth. Researchers at Aarhus University, Denmark, have now developed a nanosensor that can mimic what happens in your ...

Fly ash builds green cement mixture

10 hours ago

An eco-friendly cement, known as Alkali Pozzolan Cement (APC), containing a mixture of fly ash, dry lime powder and sodium sulphate under specific scaffolding conditions has been developed by Curtin University ...

User comments : 0