Novel study finds proton channels inhibit the release of histamine during allergic reactions

Jul 29, 2008

Inhibiting the proton currents in basophils, a rare type of white blood cell, can stop the release of histamine and could provide a new target for allergy and asthma drugs according to a new study by researchers at Rush University Medical Center in Chicago and the Johns Hopkins Asthma and Allergy Center in Baltimore. The research is published in the August 5th issue the Proceedings of the National Academy of Sciences.

When allergens enter the body, they can be recognized by IgE antibodies bound to basophils, causing these white blood cells to release the inflammatory chemical histamine. Histamine causes several allergic symptoms, including airway constriction in the lungs, severe itching, hives and swelling, and is a major cause of asthma.

Basophils are among several cell types that express unique ion channels called voltage-gated proton channels. Ion channels open and close providing gates for ions, or charged electrical particles, to enter or leave cells. This in turn controls the function of the cell. Voltage-gated proton channels only allow protons to leave cells and seem to be designed to rapidly and efficiently force acid from cells.

Previously the function of the proton channels in basophils was unknown. Researchers at Rush have determined these channels are important in the process of histamine release.

"Our research shows that proton channels in basophils respond vigorously to agents that elicit histamine release," said Thomas DeCoursey, PhD, professor of molecular biophysics and physiology at Rush. "We also determined that histamine was inhibited by zinc at concentrations that inhibit proton currents, consistent with the idea that proton channel activity is linked to basophil activation."

According to DeCoursey, this research points to a new target for drug developers. Prevent the channel from working and that would stop the release of histamine. Currently, the most potent inhibitor is zinc, but zinc is toxic in high concentrations and the body regulates zinc levels very closely. The goal is to develop a more selective inhibitor of the proton channel that would bind to it and prevent its activity without doing harm.

"It is exciting to discover a novel function for proton channels," said DeCoursey. "We believe this research could lead to new approaches to reduce the potentially deadly consequences of asthma and allergic reactions."

Source: Rush University

Explore further: Artificial sweeteners linked to abnormal glucose metabolism

add to favorites email to friend print save as pdf

Related Stories

Golden retriever study sniffs for cancer clues

30 minutes ago

(HealthDay)—Michael Court is a scientist and a dog lover, so he jumped at the chance to enroll his golden retriever in a nationwide study aimed at fighting cancer and other ills in canines.

Team makes scientific history with new cellular connection

49 minutes ago

Researchers led by Dr. Helen McNeill at the Lunenfeld-Tanenbaum Research Institute have revealed an exciting and unusual biochemical connection. Their discovery has implications for diseases linked to mitochondria, ...

First bill in Tesla deal sails through Assembly

53 minutes ago

The Nevada Assembly has unanimously approved the first of four bills that make up a package of up to $1.3 billion in tax breaks and incentives the Legislature is considering to seal a deal to bring Tesla ...

Study maps 15 years of carbon dioxide emissions on Earth

1 hour ago

World leaders face multiple barriers in their efforts to reach agreement on greenhouse gas emission policies. And, according to Arizona State University researchers, without globally consistent, independent ...

Recommended for you

A new way to prevent the spread of devastating diseases

55 minutes ago

For decades, researchers have tried to develop broadly effective vaccines to prevent the spread of illnesses such as HIV, malaria, and tuberculosis. While limited progress has been made along these lines, ...

New molecule allows for increase in stem cell transplants

1 hour ago

Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the fi ...

Team explores STXBP5 gene and its role in blood clotting

4 hours ago

Two independent groups of researchers led by Sidney (Wally) Whiteheart, PhD, of the University of Kentucky, and Charles Lowenstein, MD, of the University of Rochester, have published important studies exploring the role that ...

User comments : 0