Researchers tap into a new and potentially better source of platelets for transfusion

Jul 28, 2008

Japanese researchers may be one step closer to improving treatments for bleeding disorders. A group of researchers from the University of Tokyo has devised a way to maximize the numbers and function of clot-forming blood cells from mice. Their work will be published online in the Journal of Experimental Medicine on July 28.

Clot-forming blood cells, or platelets, can drop to dangerously low levels in diseases such as anemia and in patients undergoing chemotherapy. To replace these critical cells, doctors filter platelets from donated blood, but this approach can increase the risk of transmitting blood infections and cause other side effects in patients who need frequent transfusions.

To get around these problems, scientists have been trying to generate platelets from embryonic stem cell lines. But stem cells also give rise to other types of cells, which tend to quickly outnumber the platelets. The Japanese group solved this problem with a simple refinement—they started with a stem cell population that was already committed to becoming platelets.

Another problem with making platelets from stem cells is that the resulting platelets often fail to form clots properly. This defect can be caused by the presence of enzymes that shear adhesive proteins from the cells' surface, preventing them from sticking to one another or to blood vessel walls. The researchers found these enzymes in their laboratory cultures and showed that blocking them restored platelet function when the cells were infused into injured mice. The scientists now plan to test whether the same approach will work in humans.

Source: Journal of Experimental Medicine

Explore further: Researchers take 'first baby step' toward anti-aging drug

add to favorites email to friend print save as pdf

Related Stories

Study confirms controversial nitrite hypothesis

Dec 12, 2014

Understanding how nitrite can improve conditions such as hypertension, heart attack and stroke has been the object of worldwide research studies. New research from Wake Forest University has potentially moved the science ...

Shape of things to come in platelet mimicry

Nov 05, 2014

Artificial platelet mimics developed by a research team from Case Western Reserve University and University of California, Santa Barbara, are able to halt bleeding in mouse models 65 percent faster than nature ...

Architecture of a lipid transport protein revealed

Nov 13, 2014

For the first time, the complex architecture of a protein that controls the transport of lipids between the two layers of a cell membrane has been described. With this structure, Biochemists from the University ...

Researchers gain fuller picture of cell protein reactions

Nov 21, 2013

Over the past decade, advances in genetic mapping tools have provided great insight into how DNA influences cell behavior. But genetics is only half the equation; much of cells' behavior is the result of post-transcriptional ...

Researchers develop synthetic platelets

May 30, 2012

Synthetic platelets have been developed by UC Santa Barbara researchers, in collaboration with researchers at Scripps Research Institute and Sanford-Burnham Institute in La Jolla, Calif. Their findings are ...

Recommended for you

Biomedical team creates 'nerve on a chip'

Dec 24, 2014

Michael J. Moore and J. Lowry Curley first met in the laboratory as professor and student. Now the two Tulane University researchers have started a new biomedical company that's winning praise and awards.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.