Shielding for ambitious neutron experiment

Jul 24, 2008

In science fiction stories it is either the inexhaustible energy source of the future or a superweapon of galactic magnitude: antimaterial. In fact, antimaterial can neither be found on Earth nor in space, is extremely complex to produce and thus difficult to study.

In order to nevertheless track down the origin of material and antimaterial in the universe, a European research group is measuring the power of the electrical dipole moment of neutrons, which represents a measure for the different physical properties of material and antimaterial.

The prerequisite for further, still more accurate measurements is a perfect insulation against electrical and magnetic radiation from the environment. Magnetically soft mumetal serves as a material of the new shielding - the design, testing and set-up of which the Physikalisch-Technische Bundesanstalt is responsible.

Neutrons are electrically neutral particles, when observed externally. As the neutron contains both positively and negatively charged quarks, it would be conceivable that there exist equally large positive and negative charges at a minimal spatial distance from one another in its interior. The neutron would then be an electrical dipole with two oppositely charged poles.

At the Institut Laue-Langevin (ILL) in Grenoble, a European research group is attempting to measure the magnitude of the electrical dipole moment of neutrons (nEDM) with high accuracy. In these experiments, the behaviour of extremely slow neutrons, so-called ultra cold neutrons (or abbreviated as UCN), is investigated in magnetic and electrical fields.

Due to the fact that neutrons possess a spin and thus have a magnetic moment, they are also subject to electromagnetic interaction. If an additional electrical field is applied, the neutron, if it possesses an electrical dipole moment, would have to slightly change its properties in a magnetic field.

So far, experiments have shown no sign that would indicate an appreciable electrical dipole moment. Due to the fundamental physical significance it is interesting, however, to further restrict the magnitude of the possible electrical dipole moment. The electrical dipole moment of the neutron is namely a measure of how strongly matter and anti matter differ from one another in their physical properties. In order to significantly improve the measurement uncertainty, a new setting up of the experiment at the Paul Scherrer Institut (PSI) with a stronger UCN source and a better magnetic shielding is planned.

As valuable know-how has been collected at the PTB during the assembly of the best-shielded magnetic cabin worldwide, this expertise is now to be used for the construction, testing and assembly of the new shielding of the neutron experiment. The measuring systems available at PTB will be used for the preliminary investigation of facility components. Of particular importance is the expertise at PTB for detecting even the slightest magnetic impurities.

Provided by PTB

Explore further: Heat makes electrons spin in magnetic superconductors

Related Stories

Startup marries digital, physical worlds

29 minutes ago

A startup business that wants to link the realm of physical objects to the digital world of the Internet is basing its future on low-cost, highly engineered, one-of-a-kind plastic stamps.

Detecting human life with remote technology

31 minutes ago

Flinders engineering students Laith Al-Shimaysawee and Ali Al-Dabbagh have developed ground-breaking new technology for detecting human life using remote cameras.

Bendable glass devices

37 minutes ago

A special class of glass materials known as chalcogenide glasses holds promise for speeding integration of photonic and electronic devices with functions as diverse as data transfer and chemical sensing. ...

Recommended for you

Direct visualization of magnetoelectric domains

1 hour ago

A novel microscopy technique called magnetoelectric force microscopy (MeFM) was developed to detect the local cross-coupling between magnetic and electric dipoles. Combined experimental observation and theoretical ...

Upside down and inside out

2 hours ago

Researchers have captured the first 3D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

ICARUS neutrino experiment to move to Fermilab

Apr 23, 2015

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean from CERN to its new home at the US Department of Energy's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.