Shielding for ambitious neutron experiment

Jul 24, 2008

In science fiction stories it is either the inexhaustible energy source of the future or a superweapon of galactic magnitude: antimaterial. In fact, antimaterial can neither be found on Earth nor in space, is extremely complex to produce and thus difficult to study.

In order to nevertheless track down the origin of material and antimaterial in the universe, a European research group is measuring the power of the electrical dipole moment of neutrons, which represents a measure for the different physical properties of material and antimaterial.

The prerequisite for further, still more accurate measurements is a perfect insulation against electrical and magnetic radiation from the environment. Magnetically soft mumetal serves as a material of the new shielding - the design, testing and set-up of which the Physikalisch-Technische Bundesanstalt is responsible.

Neutrons are electrically neutral particles, when observed externally. As the neutron contains both positively and negatively charged quarks, it would be conceivable that there exist equally large positive and negative charges at a minimal spatial distance from one another in its interior. The neutron would then be an electrical dipole with two oppositely charged poles.

At the Institut Laue-Langevin (ILL) in Grenoble, a European research group is attempting to measure the magnitude of the electrical dipole moment of neutrons (nEDM) with high accuracy. In these experiments, the behaviour of extremely slow neutrons, so-called ultra cold neutrons (or abbreviated as UCN), is investigated in magnetic and electrical fields.

Due to the fact that neutrons possess a spin and thus have a magnetic moment, they are also subject to electromagnetic interaction. If an additional electrical field is applied, the neutron, if it possesses an electrical dipole moment, would have to slightly change its properties in a magnetic field.

So far, experiments have shown no sign that would indicate an appreciable electrical dipole moment. Due to the fundamental physical significance it is interesting, however, to further restrict the magnitude of the possible electrical dipole moment. The electrical dipole moment of the neutron is namely a measure of how strongly matter and anti matter differ from one another in their physical properties. In order to significantly improve the measurement uncertainty, a new setting up of the experiment at the Paul Scherrer Institut (PSI) with a stronger UCN source and a better magnetic shielding is planned.

As valuable know-how has been collected at the PTB during the assembly of the best-shielded magnetic cabin worldwide, this expertise is now to be used for the construction, testing and assembly of the new shielding of the neutron experiment. The measuring systems available at PTB will be used for the preliminary investigation of facility components. Of particular importance is the expertise at PTB for detecting even the slightest magnetic impurities.

Provided by PTB

Explore further: New terahertz device could strengthen security

add to favorites email to friend print save as pdf

Related Stories

Device physics: Simulating electronic smog

Jul 03, 2013

A research team from A*STAR and Samsung Electronics has developed a fast and accurate way to estimate the electromagnetic emissions from printed circuit boards that could help designers to ensure that devices ...

Big Bang under the microscope

Jan 03, 2013

(Phys.org)—Scientists have replaced the telescope with the microscope: Using the similarities between the structure of a crystal and the state of the cosmos in the early universe, they have explored a yet ...

Recommended for you

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

New technique allows ultrasound to penetrate bone, metal

Nov 20, 2014

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.