Shielding for ambitious neutron experiment

Jul 24, 2008

In science fiction stories it is either the inexhaustible energy source of the future or a superweapon of galactic magnitude: antimaterial. In fact, antimaterial can neither be found on Earth nor in space, is extremely complex to produce and thus difficult to study.

In order to nevertheless track down the origin of material and antimaterial in the universe, a European research group is measuring the power of the electrical dipole moment of neutrons, which represents a measure for the different physical properties of material and antimaterial.

The prerequisite for further, still more accurate measurements is a perfect insulation against electrical and magnetic radiation from the environment. Magnetically soft mumetal serves as a material of the new shielding - the design, testing and set-up of which the Physikalisch-Technische Bundesanstalt is responsible.

Neutrons are electrically neutral particles, when observed externally. As the neutron contains both positively and negatively charged quarks, it would be conceivable that there exist equally large positive and negative charges at a minimal spatial distance from one another in its interior. The neutron would then be an electrical dipole with two oppositely charged poles.

At the Institut Laue-Langevin (ILL) in Grenoble, a European research group is attempting to measure the magnitude of the electrical dipole moment of neutrons (nEDM) with high accuracy. In these experiments, the behaviour of extremely slow neutrons, so-called ultra cold neutrons (or abbreviated as UCN), is investigated in magnetic and electrical fields.

Due to the fact that neutrons possess a spin and thus have a magnetic moment, they are also subject to electromagnetic interaction. If an additional electrical field is applied, the neutron, if it possesses an electrical dipole moment, would have to slightly change its properties in a magnetic field.

So far, experiments have shown no sign that would indicate an appreciable electrical dipole moment. Due to the fundamental physical significance it is interesting, however, to further restrict the magnitude of the possible electrical dipole moment. The electrical dipole moment of the neutron is namely a measure of how strongly matter and anti matter differ from one another in their physical properties. In order to significantly improve the measurement uncertainty, a new setting up of the experiment at the Paul Scherrer Institut (PSI) with a stronger UCN source and a better magnetic shielding is planned.

As valuable know-how has been collected at the PTB during the assembly of the best-shielded magnetic cabin worldwide, this expertise is now to be used for the construction, testing and assembly of the new shielding of the neutron experiment. The measuring systems available at PTB will be used for the preliminary investigation of facility components. Of particular importance is the expertise at PTB for detecting even the slightest magnetic impurities.

Provided by PTB

Explore further: Research group figures out a way to film a laser in normal air bouncing off mirrors (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

NHL sends GoPro cameras onto the ice

3 hours ago

Ice hockey fans will get a new perspective on the fast-moving game when National Hockey League players don GoPro cameras, starting with this weekend's all-star fixture.

Recommended for you

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

Particle physicists discuss JUNO neutrino experiment

Jan 28, 2015

The construction of the facilities for the JUNO neutrino experiment has been initiated with an official groundbreaking ceremony near the south Chinese city of Jiangmen. Involved in the Jiangmen Underground ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.