Once suspect protein found to promote DNA repair, prevent cancer

Jul 21, 2008

An abundant chromosomal protein that binds to damaged DNA prevents cancer development by enhancing DNA repair, researchers at The University of Texas M. D. Anderson Cancer Center report online this week in the Proceedings of the National Academies of Science.

The protein, HMGB1, was previously hypothesized to block DNA repair, senior author Karen Vasquez, Ph.D., associate professor in M. D. Anderson's Department of Carcinogenesis at the Science Park - Research Division in Smithville, Texas.

Identification and repair of DNA damage is the frontline defense against the birth and reproduction of mutant cells that cause cancer and other illnesses.

Pinpointing HMGB1's role in repair raises a fundamental question about drugs under development to block the protein, Vasquez said. The protein also plays a role in inflammation, so it's being targeted in drugs under development for rheumatoid arthritis and sepsis.

"Arthritis therapy involves long-term treatment," Vasquez said. "Our findings suggest that depleting this protein may leave patients more vulnerable to developing cancer."

Long known to attach to sites of damaged DNA, the protein was suspected of preventing repair. "That did not make sense to us, because HMGB1 is a chromosomal protein that's so abundant that it would be hard to imagine cell repair happening at all if that were the case," Vasquez said.

In a series of experiments reported in the paper, Vasquez and first author Sabine Lange, a doctoral candidate in the Graduate School of Biomedical Sciences, tracked the protein's impact on all three steps of DNA restoration: access to damage, repair and repackaging of the original structure, a combination of DNA and histone proteins called chromatin.

First, they knocked out the gene mouse embryonic cells and then exposed cells to two types of DNA-damaging agents. One was UV light, the other a chemotherapy called psoralen that's activated by exposure to darker, low frequency light known as UVA. In both cases, the cells survived at a steeply lower rate after DNA damage than did normal cells.

Next they exposed HMGB1 knockout cells and normal cells to psoralen and assessed the rate of genetic mutation. The knockout cells had a mutation frequency more than double that of normal cells, however, there was no effect on the types of mutation that occurred.

Knock out and normal cells were then exposed to UV light and suffered the same amount of damage. However, those with HMGB1 had two to three times the repair as those without. Evidence suggests that HMGB1 works by summoning other DNA repair factors to the damaged site, Vasquez said.

The last step in DNA repair is called chromatin remodeling. DNA does not exist in a linear structure in the chromosome, but wraps around specialized histone proteins. This chromatin structure permits access to DNA when it is loose, or opened up, and blocks access when it is more tightly wrapped. Presence of HMGB1 resulted in a much higher rate of chromatin assembly in both undamaged and UVC-damaged cells.

Lange and Vasquez hypothesize that HMGB1 normally binds to the entrance and exit of DNA nucleosomes, so is nearby when DNA damage occurs. It then binds to and bends the damaged site at a 90-degree angle, a distortion that may help DNA repair factors recognize and repair the damage. After repair it facilitates restructuring of the chromatin.

Source: University of Texas M. D. Anderson Cancer Center

Explore further: Researcher develops, proves effectiveness of new drug for spinal muscular atrophy

add to favorites email to friend print save as pdf

Related Stories

How to tell good stem cells from the bad

Sep 05, 2014

The promise of embryonic stem cell research has been thwarted by an inability to answer a simple question: How do you know a good stem cell from a bad one?

Cellular RNA can template DNA repair in yeast

Sep 03, 2014

The ability to accurately repair DNA damaged by spontaneous errors, oxidation or mutagens is crucial to the survival of cells. This repair is normally accomplished by using an identical or homologous intact ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

New functions for chromatin remodelers

Aug 28, 2014

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

'Zombie' bacteria are nothing to be afraid of

Aug 28, 2014

A cell is not a soap bubble that can simply pinch in two to reproduce. The ability to faithfully copy genetic material and distribute it equally to daughter cells is fundamental to all forms of life. Even ...

Light of life

Aug 27, 2014

A fluorescent microscopic view of cells from a type of bone cancer, being studied for a future trip to deep space – aiming to sharpen our understanding of the hazardous radiation prevailing out there.

Recommended for you

Cellular protein may be key to longevity

13 hours ago

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

15 hours ago

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

T-bet tackles hepatitis

16 hours ago

A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

User comments : 0