Killer Kevlar -- clothing that shields from germs

Jul 21, 2008
Kevlar
Researchers have developed a process to coat Kevlar with germ-fighting agents, including antibacterial and antiviral substances. Above is coated Kevlar fabric exposed to a fungus called Candida tropicalis. Courtesy of the American Chemical Society

Protective clothing worn by firemen and other emergency workers may soon get a germ-fighting upgrade. Researchers in South Dakota report progress toward the first Kevlar fabrics that can kill a wide range of infectious agents, including bacteria, viruses, and the spores that cause anthrax. Their study is scheduled for the August 6 issue of ACS' Industrial & Engineering Chemistry Research.

In the new study, Yuyu Sun and Jie Luo point out that Kevlar fabrics are widely used as fire-resistant materials for firefighters, police and emergency medical workers. But amid increased threats of bioterrorism, there's a growing need for new protective clothing that can also provide multiple protection against a wide variety of dangerous microorganisms.

The scientists developed a special process to coat Kevlar samples with acyclic N-Halamine, a potent germ-fighting substance. They then exposed coated and uncoated fabric samples to E. coli, Staphylococcus aureus, Candida tropicalis (a fungus), MS2 virus, and Bacillus subtilis spores (to mimic anthrax).

After a short time, large amounts of microorganisms stuck to untreated fabric samples, but the coated fabrics showed little to no adherence of the infectious agents, the researchers say. The coating is long-lasting, can be reactivated, and does not cause any loss of fabric comfort or strength, they add.

Source: ACS

Explore further: Team discovers evolutionary mechanism that allows bacteria to resist antibiotics

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Cell imaging gets colorful

6 hours ago

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

6 hours ago

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.