Class of antibiotics can enhance gene-silencing tool

Jul 20, 2008

A way to turn off one gene at a time has earned acceptance in biology laboratories over the last decade. Doctors envision the technique, called RNA interference, as a tool to treat a variety of diseases if it can be adapted to humans.

Emory University researchers have discovered that antibiotics known as fluoroquinolones can make RNA interference more effective in the laboratory and reduce potential side effects. The results will be published online this week in the journal Nature Biotechnology.

"The surprising aspect is that some fluoroquinolones have this previously unrecognized property," says senior author Peng Jin, PhD, assistant professor of human genetics at Emory University School of Medicine. "The good part is that doctors have years of experience treating bacterial infections with them, so they are generally considered safe."

The most powerful enhancer of RNA interference was enoxacin, which has been used to treat gonorrhea and urinary tract infections. The group of compounds also includes the widely used antibiotic ciprofloxacin. The antibiotics' effect on RNA interference appears to be chemically separate from their bacteria-killing activities.

Significant barriers still prevent RNA interference from working well in people, Jin says.

"The barriers include specificity and toxicity, as well as getting the RNA to the right place in the body," he says. "If we can enhance how potent a given amount of RNA is and reduce dosage, we're tackling both specificity and toxicity."

Some studies have found that side effects come from the amount of RNA injected, which can trigger an anti-viral response, rather than from the genetic sequence of the RNA used.

Andrew Fire and Craig Mello received the 2006 Nobel Prize in Medicine for their discovery that short pieces of RNA, when introduced into cells, can silence a stretch of genetic code. Artificially introduced RNA hijacks machinery inside the cell called the RNA-induced silencing complex or RISC.

To probe how RISC works, Jin and his co-workers inserted a gene for a fluorescent protein into a cell line, and then added a short piece of RNA that incompletely silences the inserted gene. That way, if a potential drug tweaked the silencing process, the researchers could see it quickly.

They found that enoxacin can increase how well a gene is silenced by up to a factor of ten in cultured cells and by a factor of three in mice. It appears to strengthen the grip of part of RISC, a protein called TRBP, upon small pieces of RNA.

Source: Emory University

Explore further: Step change for screening could boost biofuels

add to favorites email to friend print save as pdf

Related Stories

Study shows one reason why pigeons so rarely crash

24 minutes ago

(Phys.org)—A pair of researchers with Harvard University has uncovered one of the secrets behind pigeons' impressive flight abilities. In their paper published in Proceedings of the National Academy of ...

Can we track the world's nuclear weapons?

33 minutes ago

The Bulletin of the Atomic Scientists has unveiled an interactive infographic that tracks the number and history of nuclear weapons in the nine nuclear weapon states: the United States, Russia, the United Kingdom, France, C ...

Unified theory for skyrmion-materials

37 minutes ago

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Egypt unearths 3000-year-old tomb in southern city

37 minutes ago

Egypt's Ministry of Antiquities says American archeologists have discovered a 3000-year-old tomb with beautifully painted walls belonging to a nobleman who guarded the temple of the ancient deity Amun.

Recommended for you

Study shows one reason why pigeons so rarely crash

24 minutes ago

(Phys.org)—A pair of researchers with Harvard University has uncovered one of the secrets behind pigeons' impressive flight abilities. In their paper published in Proceedings of the National Academy of ...

Gold standard management of the diabetic cat

1 hour ago

The International Society of Feline Medicine (ISFM), the veterinary division of International Cat Care, has convened an expert panel of veterinary clinicians and academics to produce practical guidance to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.