Protein transports nutrients believed to protect against eye disease

Jul 17, 2008

Scientists have identified the protein responsible for transporting nutrients to the eye that are believed to protect against the development of age-related macular degeneration, a leading cause of vision loss in elderly Americans.

The research sought to illuminate the process by which compounds called lutein and zeaxanthin move from the bloodstream to the eye. Various studies have suggested that high concentrations of these two dietary compounds in particular, known as xanthophylls, have properties that can prevent macular degeneration.

These two nutrients are not made by the body and must be obtained through the diet. They are commonly found in green, leafy vegetables, such as kale, spinach, broccoli, zucchini and peas, and in yellow or orange fruits and vegetables, such as carrots, papaya, squash and peaches.

According to the study, the protein SR-B1, or scavenger receptor class B, type 1, plays a central role in transporting these nutrients from the bloodstream to cells in the eye.

"Our research to understand this mechanism might provide a greater appreciation for how one could intervene to possibly slow macular degeneration," said senior study author Earl Harrison, Dean's Distinguished Professor and chair of human nutrition at Ohio State University.

An estimated 10 million Americans have age-related macular degeneration, which gradually destroys sharp, central vision. The macula is located in the center of the retina, the light-sensitive tissue at the back of the eye that sends nerve signals to the brain. Deterioration of the macula blurs the central field of vision needed to drive and read. Treatment can slow vision loss, but does not restore vision, according to the National Eye Institute.

The research appears in the August issue of the Journal of Lipid Research.

Xanthophylls are a class of carotenoids, naturally occurring pigments that absorb blue light and sometimes function as antioxidants. Several studies have suggested that the ability of lutein and zeaxanthin to filter out damaging blue light, combined with their antioxidant properties, might protect against macular degeneration. The xanthophylls are known to accumulate in the macula region of the retina to form a yellow spot, and are referred to as macular pigment.

Though this xanthophyll concentration in the retina has been observed and associated with a lower risk for the disease, the cause of macular degeneration and the precise role these compounds play in protecting against vision loss remain a mystery.

But Harrison and colleagues had observed in their previous work that SR-B1 was involved when intestinal cells absorb these nutrients from the diet, and believed that the same transporter would be needed to help the nutrients travel to cells in the eye as well.

Lutein and zeaxanthin typically represent about 80 percent of the total carotenoid content of the retina, while beta-carotene, a major dietary carotenoid, is found in only trace amounts. That high concentration of one type of carotenoid over another also suggested that a specific binding protein would be involved in the absorption process, Harrison said.

The scientists worked with a line of human retinal pigment epithelial cells from the lining of the retina, which served as a model for how macula cells function. The researchers introduced to these cells three types of carotenoids typically found in eye cells – the xanthophylls lutein and zeaxanthin, as well as beta carotene.

As expected, the retinal pigment epithelial cells absorbed much more of the xanthophylls than the beta carotene. To test the role of the SR-B1 transporter, the researchers used two different methods to block the protein's action. Under both experimental circumstances, blocking the SR-B1 protein also blocked the cells' absorption of the two xanthophylls by between 41 percent and 87 percent compared to absorption when SR-B1 activity was not inhibited.

"It's fairly safe to say that if you inhibit this transporter, you inhibit the uptake of xanthophylls. So that certainly suggests that this transporter is involved in that process," Harrison said.

Source: Ohio State University

Explore further: Testing time for stem cells

add to favorites email to friend print save as pdf

Related Stories

Should the Japanese give nuclear power another chance?

22 minutes ago

On September 9, 2014, the Japan Times reported an increasing number of suicides coming from the survivors of the March 2011 disaster. In Minami Soma Hospital, which is located 23 km away from the power plant, ...

Study shows no lead pollution in oilsands region

32 minutes ago

New research from a world-renowned soil and water expert at the University of Alberta reveals that there's no atmospheric lead pollution in Alberta's oilsands region—a finding that contradicts current scientific ...

How can we help endangered vultures?

32 minutes ago

Zoologists from the School of Natural Sciences at Trinity College Dublin are proposing an ingenious idea to help conserve populations of African white-backed vultures. The iconic birds, which play a critical ...

Amino acids key to new gold leaching process

33 minutes ago

Curtin University scientists have developed a gold and copper extraction process using an amino acid–hydrogen peroxide system, which could provide an environmentally friendly and cheaper alternative to ...

Recommended for you

Testing time for stem cells

1 hour ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

20 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0