Using magnetic nanoparticles to combat cancer

Jul 16, 2008
Using magnetic nanoparticles to combat cancer
Magnetic Nanoparticles Capture Ovarian Cancer Cells

Scientists at Georgia Tech have developed a potential new treatment against cancer that attaches magnetic nanoparticles to cancer cells, allowing them to be captured and carried out of the body. The treatment, which has been tested in the laboratory and will now be looked at in survival studies, is detailed online in the Journal of the American Chemical Society.

"We've been able to use magnetic nanoparticles to capture free-floating cancer cells and then take them out of the body," said John McDonald, chair of the School of Biology at Georgia Tech and chief research scientist at the Ovarian Cancer Institute. "This technology may be of special importance in the treatment of ovarian cancer where the malignancy is typically spread by free-floating cancer cells released from the primary tumor into the abdominal cavity."

The idea came to the research team from the work of Ken Scarberry, a Ph.D. student in Tech's School of Chemistry and Biochemistry. Scarberry originally conceived of the idea as a means of extracting viruses and virally infected cells when his advisor, Chemistry professor John Zhang, had another idea. He asked if the technology could be applied to cancer. Scarberry suggested it might be an effective means of preventing cancer cells from spreading.

They began by testing the therapy on mice. After giving the cancer cells in the mice a fluorescent green tag and staining the magnetic nanoparticles red, they were able to apply a magnet and move the green cancer cells to the abdominal region.

"If the therapy is able to pass further tests that show it can prevent the cancer from spreading from the original tumor," Scarberry said, "it could be an important tool in cancer treatment."

This technology holds more promise than solely using antibodies to fight cancer because there seems to be less potential for the body to develop an immune response due to the unique peptide-targeting strategy, and the composition of the magnetic nanoparticles.

"If you modify the nanoparticle and target it directly to the tumor cells using a small peptide, you are less likely to generate an undesirable immune response and more accurately target the cells of interest," said Research Scientist Erin Dickerson.

In addition to testing magnetic nanoparticles, the research team is collaborating with other groups at Georgia Tech to determine how peptide-directed gold nanoparticles and nanohydrogels might also be used in fighting cancer.

Source: Georgia Institute of Technology

Explore further: Quantum dots combined with antibodies as a method for studying cells in their native environment

add to favorites email to friend print save as pdf

Related Stories

How scorpion venom could yield new cancer treatment

Jan 07, 2015

In the development of new drugs, taking something from nature and modifying it has been a successful tactic employed by medicinal chemists for years. Now, with the help of nanotechnology, researchers are ...

Recommended for you

Holes in valence bands of nanodiamonds discovered

15 hours ago

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Engineering self-assembling amyloid fibers

Jan 26, 2015

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jul 16, 2008
Try getting an electron-volt reading on the cancer cell. (It should be more negative than surrounding cells if my reasoning is correct.) You could then be able to detect and destroy, or neutralize them electronically.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.