Frogs with disease-resistance genes may escape extinction

Jul 16, 2008

As frog populations die off around the world, researchers have identified certain genes that can help the amphibians develop resistance to harmful bacteria and disease. The discovery may provide new strategies to protect frog populations in the wild.

New work, published in the online, open-access journal PLoS ONE, examines how genes encoding the major histocompatibility (MHC) complex affect the ability of frogs to resist infection by a bacterium that is commonly associated with frog population declines.

"In the short term, captive management of frogs with complementary disease-resistance genes may offer the best hope for saving species from extinction," says Bruce Waldman, a biologist at Lincoln University in New Zealand and one of the paper's authors. "Management practices that maintain or enhance diversity in MHC genes may prove the key to safeguarding frog populations in the wild."

"Massive die-offs of frogs may indicate environmental problems that ultimately will affect other species, including humans," Waldman says. "But, despite the concern, little is known about factors that make individuals susceptible to disease."

Doctoral students Seth Barribeau and Jandouwe Villinger, working with Waldman, exposed African clawed frog tadpoles to several doses of the bacterium Aeromonas hydrophila. They examined the number of tadpoles that survived and measured how fast they grew.

Certain genes allowed tadpoles to survive bacterial infection but at a cost, as these tadpoles sometimes grew more slowly. Among siblings, patterns of disease resistance corresponded to tadpoles' MHC genes rather than other genes that they shared, demonstrating that the MHC genes conferred immunity.

Programs currently are underway to rescue frogs from declining wild populations and breed them in captivity to ensure that species are not lost to extinction. This study suggests that selective breeding of individuals with known disease-resistance genes might produce frogs that can survive infection by pathogens, even after the frogs are reintroduced into the wild.

The research team studied the African clawed frog because its immune system already had been well characterized, but as most frogs and toads have similar immune systems, they believe that their results will be generally applicable to all threatened and endangered amphibians.

Source: Public Library of Science

Explore further: Woolly mammoth genome sequencer at UWA

add to favorites email to friend print save as pdf

Related Stories

Slimy fish and the origins of brain development

Sep 17, 2014

Lamprey—slimy, eel-like parasitic fish with tooth-riddled, jawless sucking mouths—are rather disgusting to look at, but thanks to their important position on the vertebrate family tree, they can offer ...

Genetics reveal effects of deadly frog fungus

Aug 07, 2014

(Phys.org) —A deadly fungus has decimated certain populations of amphibians globally for the past few decades, but scientists remain unclear about the exact mechanisms that lead to its disease.

Head formation of clawed frog embryos

Jul 11, 2014

On July 9, 2014, Dr. Yuuri Yasuoka in the Okinawa Institute of Science and Technology Graduate University's Marine Genomics Unit, published a research paper explaining a key mechanism in formation of ...

Recommended for you

Woolly mammoth genome sequencer at UWA

12 minutes ago

How can a giant woolly mammoth which lived at least 200,000 years ago help to save the Tasmanian Devil from extinction? The answer lies in DNA, the carrier of genetic information.

Big science from small insects

45 minutes ago

Anniversaries are often a time to look back. But after taking stock of the past, it can be just as important to look to the future.

Battling superbugs with gene-editing system

18 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

User comments : 0