Not the protein, but its location in the cell, determines the onset of leukemia

Jul 10, 2008

Scientists are still searching for the cause of many forms of Leukemia, including T-cell acute lymphoblastic leukemia. VIB researchers connected to the Katholieke Universiteit Leuven have discovered that the carcinogenic property of the fusion protein NUP214-ABL1 largely depends on its location in the cell. Casting new light on the biological processes behind T-ALL, this finding is important in the search for new targeted therapies that are less toxic than chemotherapy.

The white blood cells in our body combat foreign intruders, such as viruses and bacteria. However, in leukemia, the formation of white blood cells is disturbed: the cells that should develop into white blood cells multiply out of control without fully maturing. This process disrupts the production of normal blood cells, making patients more susceptible to infections. T-ALL, a particular form of leukemia, is the most prevalent cancer in children under 14 years of age and occurs predominantly between the ages of two and three. At the moment, with an optimal treatment using chemotherapy, over half of the children are cured. But scientists hope to be able to develop targeted therapies that are less toxic than chemotherapy, based on knowledge of the biological processes behind T-ALL.

Oncogenes are often at the root of cancer. So, scientists around the world are concentrating on identifying oncogenes and their related proteins. Recent research by Kim De Keersmaecker and colleagues in Jan Cools' research group (VIB-K.U.Leuven) indicates that the location in the cell where these proteins are found plays an important role in the entire carcinogenic mechanism. In collaboration with Maarten Fornerod (Nederlands Kanker Instituut, Amsterdam) and Gary Gilliland (Harvard Medical School, Boston), the VIB researchers have demonstrated that NUP214-ABL1, a fusion of two proteins, is carcinogenic only when it is in a protein complex near the nucleus of the cell. Located at another place in the cell, NUP214-ABL1 does not lead to cancer. This finding sheds new light on the study of carcinogenic processes.

Many forms of cancer are caused by genetic defects in which a certain kinase becomes too active − and this is the case with NUP214-ABL1. The most obvious solution is to make the carcinogenic kinase inactive, and so kinase inhibitors are usually used to combat these kinds of cancers. However, the carcinogenic kinase often becomes resistant to these inhibitors − which is certainly true for T-ALL. So, scientists are actively seeking alternative approaches.

De Keersmaecker's recent research results now offer a possibility. Indeed, the scientists have shown in cells that NUP214-ABL1 is no longer carcinogenic when it cannot bind with the protein complex in the vicinity of the cell nucleus. On the basis of these results, the researchers want to further investigate the therapeutic possibilities of compounds that render binding between the complex and NUP214-ABL1 impossible. This study also indicates that the location of proteins can play an important role in other forms of cancer/leukemia as well.

Source: VIB (the Flanders Institute for Biotechnology)

Explore further: Chronic inflammation linked to 'high-grade' prostate cancer

add to favorites email to friend print save as pdf

Related Stories

It slices, it dices, and it protects the body from harm

Mar 01, 2014

An essential weapon in the body's fight against infection has come into sharper view. Researchers at Princeton University have discovered the 3D structure of an enzyme that cuts to ribbons the genetic material ...

Italian court blames benign brain tumor on phone

Oct 19, 2012

(AP)—Italy's top court has ruled that a businessman developed a benign brain tumor because he held a cellphone to his ear for hours daily for his job and deserves worker's compensation.

Arsenic biomethylation required for oxidative DNA damage

Nov 23, 2009

Biomethylation of arsenic compounds appears to cause oxidative DNA damage and to increase their carcinogenicity, according to a new study published online November 23 in the Journal of the National Cancer Institute.

Parasite growth hormone pushes human cells to liver cancer

Oct 09, 2009

Scientists have found that the human liver fluke (Opisthorchis viverrini) contributes to the development of bile duct (liver) cancer by secreting granulin, a growth hormone that is known to cause uncontrolled growth of cel ...

Recommended for you

Cancer stem cells linked to drug resistance

7 hours ago

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Unraveling the 'black ribbon' around lung cancer

Apr 17, 2014

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?

User comments : 0

More news stories

Less-schooled whites lose longevity, study finds

Barbara Gentry slowly shifts her heavy frame out of a chair and uses a walker to move the dozen feet to a chair not far from the pool table at the Buford Senior Center. Her hair is white and a cough sometimes interrupts her ...

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.