Enzyme key to 'sister act' that maintains genome stability

Jul 10, 2008

Keeping the genome stable is a "sister act" of matched chromatids – the pairs of the double helix DNA molecule that exist during the chromosome duplication in the S phase of the cell cycle.

Maintaining the chromatids in their sister pairs rests with Eco1, a kind of enzyme known as an acetyltransferase. Now researchers at Baylor College of Medicine, in a collaboration of two laboratories, have shown that Eco1 and its human homologue maintain sister chromatid cohesion and thus genome stability through a chemical process called acetylation that affects Smc3, one of the key components of the cohesion protein complex. A report on their work appears in the current online issue of the journal Molecular Cell.

This activity is critical to maintaining the stability of the cell's genome and its survival, said Dr. Jun Qin, associate professor of biochemistry and molecular biology and molecular and cellular biology at BCM and a senior author of the report.

"If a cell lacks this acetyltransferase activity, it's dead," said Dr. Xuewen Pan, assistant professor of biochemistry and molecular biology and molecular and human genetics at BCM and also a senior author.

"This is critical for genome stability, cell growth and organism survival," said Qin.

"The collaboration in this work was important," he said. His laboratory carried out the work in human cells, and Pan's did the work in yeast.

"We pooled the resources of our two laboratories and took advantage of the power of the genetics in yeast and the power of proteomics and cell biology in the human. If a single labor had worked on this project, we would not have as complete a story," Qin said.

Source: Baylor College of Medicine

Explore further: Assortativity signatures of transcription factor networks contribute to robustness

add to favorites email to friend print save as pdf

Related Stories

The devastating spread of the mountain pine beetle

1 hour ago

When the mountain pine beetle began blazing a path across forests in British Columbia and Alberta, nobody could have imagined the extent of the damage to come. But as the insect devastated pine forests and ...

Researchers look at small RNA pathways in maize tassels

Aug 22, 2014

Researchers at the University of Delaware and other institutions across the country have been awarded a four-year, $6.5 million National Science Foundation grant to analyze developmental events in maize anthers ...

From eons to seconds, proteins exploit the same forces

Aug 12, 2014

(Phys.org) —Nature's artistic and engineering skills are evident in proteins, life's robust molecular machines. Scientists at Rice University have now employed their unique theories to show how the interplay ...

Recommended for you

Mutation disables innate immune system

12 hours ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 0