R&D 100 Award for new NIST/UMD neutron detector

Jul 10, 2008
NIST Lyman alpha neutron detector, shown with a US dollar coin for scale, is now the world’s most sensitive neutron detector. Credit: NIST

A new ultrasensitive, high bandwidth neutron detector developed by the National Institute of Standards and Technology (NIST) and the University of Maryland (UMD) will receive one of this year's "R&D 100 Awards," it was announced on July 1. The annual R&D 100 Awards program recognizes "the 100 most technologically significant products introduced into the market" during the previous year, as selected by an independent judging panel and the editors of R&D Magazine.

Neutron detectors are important in many applications, ranging from fundamental physics experiments to materials science, reactor operations, oil well logging, monitoring of special nuclear materials, and personal protective equipment for first responders. Conventional neutron detectors are based on proportional counters that detect the high-voltage electrical discharges created when neutrons are absorbed by atoms in a gas cell.

The NIST Lyman alpha neutron detector (LAND), on the other hand, detects neutrons by a more subtle and sensitive technique, measuring "Lyman alpha" radiation in the far ultraviolet region of the spectrum when neutrons are absorbed by a helium isotope. (See "New NIST Detector Can 'See' Single Neutrons Over Broad Range" at phys.org/news124378350.html )

A LAND instrument can detect individual neutrons, which was not possible with proportional counters, and LAND is less susceptible to spurious signals triggered by gamma rays. The device is mechanically robust and requires no specialized fabrication techniques or ultrahigh purity gases. NIST has filed a U.S. patent application on the LAND technology. A paper on LAND principles was published in the NIST Journal of Research in April 2008.

The LAND development team recognized by the R&D 100 Award consists of: Alan K. Thompson and Muhammad Arif of the NIST Ionizing Radiation Division;, Robert E. Vest and Charles W. Clark of the NIST Electron and Optical Physics Division; and Michael A. Coplan of the Institute for Physical Science and Technology, University of Maryland. Critical support for this project was provided by unique NIST calibration facilities for neutron and far ultraviolet radiation, respectively the NIST Center for Neutron Research and the FUV Detector Calibration Facility. Much of the design and construction of the LAND was done at the University of Maryland, College Park.

Citation: A.K. Thompson, M.A. Coplan, J.W. Cooper, P.P. Hughes, R.E. Vest and C. Clark. Observation of the 3He(n,tp) reaction by detection of far-ultraviolet radiation. J. Res. Nat. Inst. Standards Tech. 113, 69 (2008).

Source: NIST

Explore further: Using antineutrinos to monitor nuclear reactors

add to favorites email to friend print save as pdf

Related Stories

New detector can 'see' single neutrons over broad range

Mar 10, 2008

Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a new optical method that can detect individual neutrons and record them over a range ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

2 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

7 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

20 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Bake your own droplet lens

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

Using antineutrinos to monitor nuclear reactors

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...