Comparing apples and pears: Scientists see health-determining air paths in fruit

Jul 10, 2008
Montage of a pear and its inner structure, including the air pathways. Credit: P. Verboven

Pears and apples contain air pathways to "breathe". The pathways are microscopically small structures for oxygen supply and are key elements in determining the fruit's health.

Researchers from the Catholic University of Leuven in Belgium and the European Synchrotron Radiation Facility (ESRF) have visualized them for the first time, therefore proving their hypothesized existence. In apples, the pathways appear as irregular cavities between cells, whilst in pears they have the shape of tiny interconnected channels. These results allow a better understanding of how the fruit degrades after harvest and provide a scientific explanation of the everyday experience that pears are more susceptible to decay during storage.

Apples and pears continue to "breathe" after picking. To keep the fruit healthy, a minimum level of oxygen must be supplied to all cells of the fruit. If this does not happen, internal browning disorders appear and fruit quality decreases. This is why fruit is stored in dedicated cool rooms with accurate control of oxygen levels. The correct oxygen concentration is related to the complex mechanisms of gas exchange, respiration and fermentation in the fruit.

The correct oxygen concentration is related to the complex mechanisms of gas exchange, respiration and fermentation in the fruit. Restricted gas exchange leads to too low a level of oxygen inside the cells. Three-dimensional images of the fruit microstructure help to determine and explain gas exchange rates and when fruit cells start to die and browning initiates. Such imaging is not easy as fruit contains a lot of water and the resolution and contrast of conventional medical 3-D scanners is insufficient.

The Leuven team used the European Synchrotron Radiation Facility in Grenoble to perform tomographic imaging of fruit samples. As the researchers report in the recent issue of Plant Physiology, the powerful equipment produces 3-D images that are accurate down to and below 1/1000 of a millimeter, with sufficient contrast to separate out void spaces from cells. The images are now used in computer models to calculate oxygen concentration in individual cells of fruit tissues.

"It is still unclear how airways in the fruit develop, and why apples have cavity structures and pears micro-channel networks", explains Pieter Verboven, from the Catholic University of Leuven and corresponding author of the paper. However, the results do help explain why pears are so prone to decay during storage: "The micro-channels are so small that oxygen supply to the fruit core is very limited and cells are quickly 'out of breath' when oxygen levels fall below the safety threshold", he asserts.

Source: European Synchrotron Radiation Facility

Explore further: Ants in space find it tougher going than those on Earth

Related Stories

Manganese speeds up honey bees

Mar 24, 2015

Asked to name one way people have changed the environment, many people would probably say "global warming." But that's really just the start of it.

Recommended for you

Scientists discover new 'transformer frog' in Ecuador

7 hours ago

It doesn't turn into Prince Charming, but a new species of frog discovered in Ecuador has earned the nickname "transformer frog" for its ability to change its skin from spiny to smooth in five minutes.

Longer DNA fragments reveal rare species diversity

7 hours ago

A challenge in metagenomics is that the more commonly used sequencing machines generate data in short lengths, while short-read assemblers may not be able to distinguish among multiple occurrences of the ...

Scientists say polar bears won't thrive on land food

7 hours ago

A group of researchers say polar bears forced off melting sea ice will not find enough food to replace their current diet of fat-laden marine mammals such as seals, a conclusion that contradicts studies indicating ...

The vital question: Why is life the way it is?

9 hours ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.