MicroRNAs Provide New Insight in Study of Autism

Jul 01, 2008

MicroRNAs may play an important role in the development of autism spectrum disorder, according to a new paper by University of California, Santa Barbara professor Kenneth S. Kosik.

Kosik, co-director of UCSB's Neuroscience Research Institute and the Harriman Professor of Neuroscience, was senior author of the paper, "Heterogeneous Dysregulation of microRNAs across the Autism Spectrum," published this month in the journal Neurogenetics.

"There is such a broad interest in autism," Kosik said. "This is the first work in this area."

Autism is a neurological disorder that impairs social interaction and communication, usually before a child turns three years old.

In addition, Kosik's research discovered that autism may be even more genetically diverse than previously thought. "We can't continue to look at this (autism) as a monolithic entity," Kosik said. "This is not a single disease."

Instead, his paper revealed that microRNAs have a unique type of genetic signature that shows the very broad underlying diversity of autism. While many studies lump together all cases of autism, some recent papers have reported mutations among small numbers of autism patients. Kosik's microRNA research shows that autism does indeed cover a broad spectrum.

Ribonucleic acid, or RNA, is a link between DNA and protein. Some RNAs, according to Kosik, do not make a protein. One such type of RNA is called a microRNA because it's very short. While there are 23,000 genes in the human body, there are about 1,000 different microRNAs.

The short RNA sequences can bind to many different, longer RNAs and inhibit them from making the protein, Kosik's study found. "In this manner, they exert a broad regulatory control over the expression of many different proteins," he said. And many of the genes they control are involved in brain development.

"It was of interest to find that various members of the microRNA family are frequently dysregulated in autism," Kosik said. "This result points to a single control layer in the cell that can change in quite different ways with autism as the end result."

Source: UCSB

Explore further: Muscular dystrophy: Repair the muscles, not the genetic defect

add to favorites email to friend print save as pdf

Related Stories

Astronomers pinpoint 'Venus Zone' around stars

1 hour ago

San Francisco State University astronomer Stephen Kane and a team of researchers presented today the definition of a "Venus Zone," the area around a star in which a planet is likely to exhibit the unlivable ...

History books becoming next fight in Texas schools

2 hours ago

The next ideological fight over new textbooks for Texas classrooms intensified Wednesday with critics lambasting history lessons that they say exaggerate the influence of Moses in American democracy and negatively portray ...

Amazon deforestation up 29 pc in 2013

2 hours ago

Deforestation in the Amazon rose 29 percent between August 2012 and July of last year to 5,891 square kilometers (2,275 square miles), Brazilian officials said Wednesday, posting an amended figure.

Recommended for you

Dendritic cells affect onset and progress of psoriasis

Sep 12, 2014

Different types of dendritic cells in human skin have assorted functions in the early and more advanced stages of psoriasis report researchers in the journal EMBO Molecular Medicine. The scientists suggest that new strate ...

Approach to deadly sepsis infections continues to vary

Sep 12, 2014

Treatment practices for patients hospitalised with the potentially fatal infection known as "sepsis" will continue to vary because of individual differences between hospitals and countries, according to University of Adelaide ...

User comments : 0