NASA GLAST Burst Monitor Powers Up Successfully

Jun 27, 2008

NASA’s GLAST Burst Monitor (GBM) Instrument Operations Center in Huntsville, Ala., the focal point for observing gamma ray bursts, was alive with energy as scientists gathered to witness instrument activation the evening of June 25. The GBM team linked in with GLAST mission operations at NASA’s Goddard Space Flight Center in Greenbelt, Md., by teleconference and studied a big screen projecting spacecraft information live.

The GLAST Burst Monitor, a space-based instrument for studying gamma ray bursts, is one of two instruments on NASA's GLAST spacecraft which was successfully launched into orbit on June 11. Now in a circular orbit 350 miles above the Earth, the spacecraft is in the process of a of a two-month in-orbit checkout. Once fully operational, the Large Area Telescope and the GBM will observe gamma rays ranging in energy from a few thousand electron volts to many hundreds of billions of electron volts or higher, the widest range of coverage ever available on a single spacecraft for gamma ray studies.

Earlier in the day, one detector was turned on, then off, over a period of fourteen minutes to test the high voltage control. Now, the team eagerly anticipated the activation of all 14 detectors on the monitor. Twelve detectors are made of sodium iodide for catching X rays and low-energy gamma rays, and two detectors made of bismuth germanate for identifying high-energy gamma rays.

At precisely 7:45 p.m. CDT, the high voltage switched on and the room erupted in cheers. All fourteen detectors powered on successfully and the team began studying the data pouring in from the spacecraft.

“Everything is working great. I feel a little numb,” said Charles “Chip” Meegan, GBM principal investigator and an astrophysicist at Marshall. “The detectors all powered up successfully and the background rate is pretty much what we expected it to be. That tells us the instrument is working as expected and we have the sensitivity we need to see 200 bursts per year.”

Alexander Van Der Horst, a NASA Postdoctoral Program Fellow with Marshall cranked up Kool and the Gang’s song “Celebration” as the team shared the good news with the NASA Goddard-based GLAST team.

“Now we’re eagerly anticipating our first burst and the many years of excellent science ahead!” said Meegan.

More energetic than X-rays, gamma rays are the highest-energy form of electromagnetic radiation. When a burst occurs, the GBM will detect gamma rays from the explosion and within seconds identify the location of the burst and transmit this information to scientists on the ground. Operations center scientists will examine data from gamma ray bursts and disseminate this information to the wider scientific community swiftly, allowing ground-based instruments to observe these bursts as soon as possible.

Located at the National Space Science and Technology Center (NSSTC) in Huntsville, Ala., operations personnel and scientists working in the GBM Instrument Operations Center will scrutinize the health of the monitor and enjoy a first-hand peek at ground-breaking new gamma ray science. The NSSTC is a partnership between NASA, the state of Alabama and several universities.

A complementary operations center is located at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, allowing scientists to look at real-time data during their normal work day, offset seven hours from Huntsville. Huntsville-based operations center staff will host regular meetings via teleconference to Germany to discuss data analysis and German colleagues will assist in operations and monitoring instrument performance.

NASA collaborated with the Institute through an agreement with the German Aerospace Center to design the GBM and the institute built the monitor's power supply and crystal detectors -- the main component for intercepting gamma rays.

GLAST is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the U.S.

Source: NASA

Explore further: SpaceX Dragon cargo ship arrives at space station

Related Stories

Synthetic muscle ready for launch to Space Station

Apr 09, 2015

Lenore Rasmussen's dream of developing a synthetic muscle that could be used to make better prosthetic limbs and more responsive robots will literally become airborne on April 13 at 4:33 p.m. when her experiment ...

Getting a grip on exotic atomic nuclei

Feb 18, 2015

A new model describing atomic nuclei, proposed by a physicist from the University of Warsaw Faculty of Physics, more accurately predicts the properties of various exotic isotopes that are created in supernova explosions or ...

Recommended for you

Mercury MESSENGER nears epic mission end

4 hours ago

A spacecraft that carries a sensor built at the University of Michigan is about to crash into the planet closest to the sun—just as NASA intended.

Dawn glimpses Ceres' north pole

5 hours ago

After spending more than a month in orbit on the dark side of dwarf planet Ceres, NASA's Dawn spacecraft has captured several views of the sunlit north pole of this intriguing world. These images were taken ...

A blueprint for clearing the skies of space debris

Apr 17, 2015

An international team of scientists have put forward a blueprint for a purely space-based system to solve the growing problem of space debris. The proposal, published in Acta Astronautica, combines a super-wide field-of-view telesc ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jun 29, 2008
Looking for energy bursts that disturb living cells "gamma" joins the group!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.