Water inside single-walled carbon nanotubes

Jun 25, 2008
Carbon Nanotubes

Researchers have identified a signature for water inside single-walled carbon nanotubes, helping them understand how water is structured and how it moves within these tiny channels.

This is the first time researchers were able to get a snapshot of the water inside the carbon nanotubes.

Single-walled carbon nanotubes (SWCNTs) offer the potential to act as a unique nanofiltration system. While experiments have demonstrated extremely fast flow in these channels, it is still unclear why, and few studies have experimentally probed the detailed structure and movement of the water within nanotubes.

That's where Lawrence Livermore scientists Jason Holt, Julie Herberg, and University of North Carolina's, Yue Wu and colleagues come in.

As described in an article appearing in the July edition of Nanoletters, they used a technique called Nuclear Magnetic Resonance (NMR) to get a glimpse of the water confined inside one-nanometer diameter SWCNTs.

The nanotubes, special molecules made of carbon atoms in a unique arrangement, are hollow and more than 50,000 times thinner than a human hair. The confined water exhibited very different properties from that of bulk water, and this allowed it to be distinguished in the NMR spectrum.

Carbon nanotubes have long been touted for their superior thermal, mechanical and electrical properties, but recent work suggests they can be used as nanoscale filters.

Earlier Livermore studies have suggested that carbon nanotubes may be used for desalination and demineralization because of their small pore size and enhanced flow properties. Conventional desalination membranes are typically much less permeable and require large pressures, entailing high energy costs. However, these more permeable nanotube membranes could reduce the energy costs of desalination significantly.

While the technology offers great promise, there still are important unanswered scientific questions.

"There have been many predictions about how water behaves within carbon nanotubes," said Holt, the principal investigator of the project, which is funded through LLNL's Laboratory Directed Research and Development (LDRD). "With experiments like these, we can directly probe that water and determine how close those predictions were."


Source: DOE/Lawrence Livermore National Laboratory

Explore further: Making graphene in your kitchen

add to favorites email to friend print save as pdf

Related Stories

'Nanobionics' aims to give plants super powers

Apr 02, 2014

Plants are an engineering marvel of nature. Fueled by sunlight, they recycle our carbon dioxide waste into fresh oxygen for us to breathe. Plus, they make the world prettier. But, with a little help from us humans, can they ...

Carbon nanotubes find real world applications

Mar 31, 2014

No one disputes that carbon nanotubes have the potential to be a wonder technology: their properties include a thermal conductivity higher than diamond, greater mechanical strength than steel – orders of ...

Diamonds are an oil's best friend

Mar 28, 2014

(Phys.org) —A mixture of diamond nanoparticles and mineral oil easily outperforms other types of fluid created for heat-transfer applications, according to new research by Rice University.

Recommended for you

Making graphene in your kitchen

16 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
not rated yet Jun 25, 2008
how about using them as microtubules in micro machines to transport water as a coolant?
yybb
not rated yet Jul 16, 2008
very good

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...