Water inside single-walled carbon nanotubes

Jun 25, 2008
Carbon Nanotubes

Researchers have identified a signature for water inside single-walled carbon nanotubes, helping them understand how water is structured and how it moves within these tiny channels.

This is the first time researchers were able to get a snapshot of the water inside the carbon nanotubes.

Single-walled carbon nanotubes (SWCNTs) offer the potential to act as a unique nanofiltration system. While experiments have demonstrated extremely fast flow in these channels, it is still unclear why, and few studies have experimentally probed the detailed structure and movement of the water within nanotubes.

That's where Lawrence Livermore scientists Jason Holt, Julie Herberg, and University of North Carolina's, Yue Wu and colleagues come in.

As described in an article appearing in the July edition of Nanoletters, they used a technique called Nuclear Magnetic Resonance (NMR) to get a glimpse of the water confined inside one-nanometer diameter SWCNTs.

The nanotubes, special molecules made of carbon atoms in a unique arrangement, are hollow and more than 50,000 times thinner than a human hair. The confined water exhibited very different properties from that of bulk water, and this allowed it to be distinguished in the NMR spectrum.

Carbon nanotubes have long been touted for their superior thermal, mechanical and electrical properties, but recent work suggests they can be used as nanoscale filters.

Earlier Livermore studies have suggested that carbon nanotubes may be used for desalination and demineralization because of their small pore size and enhanced flow properties. Conventional desalination membranes are typically much less permeable and require large pressures, entailing high energy costs. However, these more permeable nanotube membranes could reduce the energy costs of desalination significantly.

While the technology offers great promise, there still are important unanswered scientific questions.

"There have been many predictions about how water behaves within carbon nanotubes," said Holt, the principal investigator of the project, which is funded through LLNL's Laboratory Directed Research and Development (LDRD). "With experiments like these, we can directly probe that water and determine how close those predictions were."


Source: DOE/Lawrence Livermore National Laboratory

Explore further: Tough foam from tiny sheets

add to favorites email to friend print save as pdf

Related Stories

From stronger Kevlar to better biology

Jul 14, 2014

Place two large, sturdy logs in a streambed, and they will help guide the water in a particular direction. But imagine if the water started mimicking the rigidity of the logs in addition to flowing along ...

Chemists develop novel catalyst with two functions

Jul 09, 2014

Chemists at the Ruhr-Universität Bochum have made a decisive step towards more cost-efficient regenerative fuel cells and rechargeable metal-air batteries. They developed a new type of catalyst on the basis ...

Evidence confirms combustion theory

Jul 01, 2014

(Phys.org) —Researchers at the Department of Energy's Lawrence Berkeley National Lab (Berkeley Lab) and the University of Hawaii have uncovered the first step in the process that transforms gas-phase molecules ...

Watching nanoscale fluids flow

Jun 27, 2014

(Phys.org) —At the nanoscale, where objects are measured in billionths of meters and events transpire in trillionths of seconds, things do not always behave as our experiences with the macro-world might ...

Nanotube forests drink water from arid air

Jun 11, 2014

(Phys.org) —If you don't want to die of thirst in the desert, be like the beetle. Or have a nanotube cup handy. New research by scientists at Rice University demonstrated that forests of carbon nanotubes ...

Recommended for you

Tough foam from tiny sheets

1 hour ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
not rated yet Jun 25, 2008
how about using them as microtubules in micro machines to transport water as a coolant?
yybb
not rated yet Jul 16, 2008
very good