New UGA invention effectively kills foodborne pathogens in minutes

Jun 25, 2008

University of Georgia researchers have developed an effective technology for reducing contamination of dangerous bacteria on food. The new antimicrobial wash rapidly kills Salmonella and E. coli O157:H7 on foods ranging from fragile lettuce to tomatoes, fruits, poultry products and meats. It is made from inexpensive and readily available ingredients that are recognized as safe by the U.S. Food and Drug Administration.

The new technology, which has commercial application for the produce, poultry, meat and egg processing industries, is available for licensing from the University of Georgia Research Foundation, Inc., which has filed a patent application on the new technology.

The Centers for Disease Control and Prevention estimates that, in the U.S. alone, foodborne pathogens are responsible for 76 million illnesses every year. Of the people affected by those illnesses, 300,000 are hospitalized and more than 5,000 die. These widespread outbreaks of food-borne illnesses are attributed, in part, to the fast-paced distribution of foods across the nation. Recently, raw tomatoes caused an outbreak of salmonellosis that sickened more than 300 people in at least 28 states and Canada.

Currently, a chlorine wash is frequently used in a variety of ways to reduce harmful bacteria levels on vegetables, fruits and poultry, but because of chlorine's sensitivity to food components and extraneous materials released in chlorinated water treatments, many bacteria survive. Chlorine is toxic at high concentrations, may produce off-flavors and undesirable appearance of certain food products, and it can only be used in conjunction with specialized equipment and trained personnel. In addition, chlorine may be harmful to the environment.

"We can't rely on chlorine to eliminate pathogens on foods," said Michael Doyle, one of the new technology's inventors and director of UGA's Center for Food Safety. "This new technology is effective, safe for consumers and food processing plant workers, and does not affect the appearance or quality of the product. It may actually extend the shelf-life of some types of produce."

Doyle is an internationally recognized authority on food safety whose research focuses on developing methods to detect and control food-borne bacterial pathogens at all levels of the food continuum, from the farm to the table. He has served as a scientific advisor to many groups, including the World Health Organization, the Food and Drug Administration, the U.S. Department of Agriculture, the U.S. Department of Defense and the U.S. Environmental Protection Agency.

The new antimicrobial technology, developed by Doyle and Center for Food Safety researcher Tong Zhao, uses a combination of ingredients that kills bacteria within one to five minutes from application. It can be used as a spray and immersion solution, and its concentration can be adjusted for treatment of fragile foods such as leafy produce, more robust foods such as poultry, or food preparation equipment and food transportation vehicles.

"The effectiveness, easy storage and application, and low cost of this novel antibacterial make it applicable not only at food processing facilities, but also at points-of-sale and at home, restaurants and military bases. The development of this technology is timely, given the recent, sequential outbreaks of foodborne pathogens," said Gennaro Gama, UGARF technology manager in charge of licensing this technology.

Source: University of Georgia

Explore further: Medtronic spends $350M on another European deal

add to favorites email to friend print save as pdf

Related Stories

Coal gas boom in China holds climate change risks

7 hours ago

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Recommended for you

Medtronic spends $350M on another European deal

3 hours ago

U.S. medical device maker Medtronic is building stronger ties to Europe, a couple months after announcing a $42.9 billion acquisition that involves moving its main executive offices across the Atlantic, where it can get a ...

Mind over matter for people with disabilities

Aug 26, 2014

People with serious physical disabilities are unable to do the everyday things that most of us take for granted despite having the will – and the brainpower – to do so. This is changing thanks to European ...

Ukraine's former world's tallest man dies

Aug 25, 2014

Ukraine's tallest man, who briefly held the world record but gave it up to live as a recluse, has died due to complications from the condition that saw him never stop growing, local media reported Monday.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

SDMike
not rated yet Jun 25, 2008
short on info what combination of what ingredients?
conservo
not rated yet Jul 02, 2008
Another article out about the same time as this one reports on studies from universities in Idaho and Washington that used a commercially available produce wash to decontaminate produce much more effectively than chlorine.
http://www.scienc...2930.htm

Since the product discussed from the UGA researchers is being patented for licensing, you're not likely to get the list of ingredients they're using. Not for free anyway.