Laser surgery probe targets individual cancer cells

Jun 24, 2008

Mechanical engineering Assistant Professor Adela Ben-Yakar at The University of Texas at Austin has developed a laser "microscalpel" that destroys a single cell while leaving nearby cells intact, which could improve the precision of surgeries for cancer, epilepsy and other diseases.

"You can remove a cell with high precision in 3-D without damaging the cells above and below it," Ben-Yakar says. "And you can see, with the same precision, what you are doing to guide your microsurgery."

Femtosecond lasers produce extremely brief, high-energy light pulses that sear a targeted cell so quickly and accurately the lasers' heat has no time to escape and damage nearby healthy cells. As a result, the medical community envisions the lasers' use for more accurate destruction of many types of unhealthy material. These include small tumors of the vocal cords, cancer cells left behind after the removal of solid tumors, individual cancer cells scattered throughout brain or other tissue and plaque in arteries.

A commercially available femtosecond laser system and microscope was developed recently for LASIK and other eye surgeries, but the system's bulk limits its usefulness. Ben-Yakar's laboratory has overcome technological challenges to create a microscope system that can deliver femtosecond laser pulses up to 250 microns deep inside tissue. The system includes a tiny, flexible probe that focuses light pulses to a spot size smaller than human cells.

Ben-Yakar's experimental system and its use to destroy a single cell within layers of breast cancer cells grown in the laboratory is described in the June 23 issue of Optics Express.

Within a few years, Ben-Yakar expects to shrink the probe's 15-millimeter diameter three-fold, so it would match endoscopes used today for laparoscopic surgery. The probe tip she has developed also could be made disposable -- for use operating on people who have infectious diseases or destroying deadly viruses and other biomaterials.

To develop the miniature laser-surgery system, Ben-Yakar worked with co-author Olav Solgaard at Stanford University's Electrical Engineering Department to incorporate a miniaturized scanning mirror. Ben-Yakar and her graduate student Chris Hoy, another co-author, also used a novel fiber optic cable that can withstand intense light pulses traveling from an infrared, femtosecond laser. To make the intensity more manageable, they stretched the light pulses into longer, weaker pulses for traveling through the fiber. Then they used the fiber's unique properties to reconstruct the light into more intense, short light pulses before entering the tissue.

For the study, Ben-Yakar directed laser light at breast cancer cells in three-dimensional biostructures that mimic the optical properties of breast tissue. She has since studied laboratory-grown, layered cell structures that mimic skin tissue and other tissues.

Ben-Yakar is also investigating the use of nanoparticles to focus the light energy on targeted cells. In research published last year, she demonstrated that gold nanoparticles can function as nano-scale magnifying lenses, increasing the laser light reaching cells by at least an order of magnitude, or 10-fold.

"If we can consistently deliver nanoparticles to cancer cells or other tissue that we want to target, we would be able to remove hundreds of unwanted cells at once using a single femtosecond laser pulse," Ben-Yakar says. "But we would still be keeping the healthy cells alive while photo-damaging just the cells we want, basically creating nanoscale holes in a tissue."

Source: University of Texas at Austin

Explore further: AbbVie shares sink after $21 bn deal for Pharmacyclics

add to favorites email to friend print save as pdf

Related Stories

New Hampshire bill requires cursive, multiplication tables

8 hours ago

As schools adopt new education standards and rely more on computers in the classroom, a group of New Hampshire senators want to make sure the basics of learning cursive and multiplication tables don't get left behind.

Recommended for you

US must respond to global health outbreaks, say bioethicists

19 hours ago

Last summer, West Africa fell into the grip of a deadly outbreak of Ebola that has thus far taken the lives of more than 9,500 people. The fear swept up by the epidemic quickly jumped across the Atlantic and landed in the ...

Uganda on defensive over medical 'brain drain' uproar

Mar 03, 2015

Uganda's government on Tuesday hit back at mounting criticism of plans to 'export' over 200 health workers to the Caribbean, insisting it was only seeking to regulate an existing labour market and prevent abuses.

Seth Mnookin on vaccination and public health

Mar 02, 2015

Seth Mnookin, an assistant professor of science writing and associate director of MIT's Graduate Program in Science Writing, is the author of "The Panic Virus: The True Story Behind the Vaccine-Autism Controversy" ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

DGBEACH
not rated yet Jun 24, 2008
Cool

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.