Understanding the migration of cancer cells

Jun 23, 2008

[B]Activity of regulatory proteins for the growth of filopodia and lamelopodia clarified[/B]
Lamellipodia are veil-shaped protrusions of the plasma membrane, that can turn into upward-curled ruffles if they fail to adhere to the substrate. A dendritic meshwork of short and highly branched actin filaments might constitute their main structural component. The other type of protrusion, the filopodia, are finger-like and consist of parallel, long and unbranched actin filaments. Interestingly, fast-crawling cells mainly form lamellipodia/ruffles while poorly migrating or non-motile cells often show the coexistence of both lamellipodial and filopodial protrusions. These observations suggest that the lamellipodia-to-filopodia selection might regulate cell migration. Moreover, the pivotal contribution of lamellipodial and filopodial protrusions to important developmental and homeostatic processes certainly requires tight regulatory mechanisms.

Unfortunately, while the microscopic morphology, dynamic development and protein signature of both lamellipodia/ruffles and filopodia have been investigated, little is known about the mechanisms whereby cells co-ordinate these actin-based extensions. Therefore, we urgently need to better understand this basic process to ultimately increase our therapeutic intervention arsenal against the metastatic progression of cancers.

It is known that the activity of regulatory proteins for the growth of the actin cytoskeleton Arp2/3 complex along with WAVE and mDia2 produce a burst of actin polymerization required for the formation of lamellipodia/ruffles and filopodia, respectively. In the forthcoming issue of Nature Cell Biology Metello Innocenti and coworkers report that, starting from the unexpected observation that mDia2, WAVE and Arp2/3 form a complex, they discovered how filopodia extensions are generated and integrated with lamellipodia/ruffles in human cancer cells. At the molecular level, WAVE and Arp2/3 jointly promote lamellipodia/ruffles outgrowth and cell migration and at the same time inhibit mDia2-dependent filopodia formation. Moreover, emission of filopodia occurs only after the disassembly of the mDia2-WAVE-Arp2/3 complex. Thus, it is likely that suppression of filopodia by the ruffling-making machinery is needed for cancer cells to move efficiently.

Their results pave the way to a cogent molecular analysis of the interplay between lamellipodia/ruffles and filopodia in regulating both the migratory and invasive abilities of cancer cells. The researchers anticipate that new and more specific therapies to counteract cancer will be developed exploiting these exciting findings.


Source: Goethe University Frankfurt

Explore further: Cancer: Tumors absorb sugar for mobility

add to favorites email to friend print save as pdf

Related Stories

Hoverbike drone project for air transport takes off

5 hours ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study indicates large raptors in Africa used for bushmeat

5 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

'Shocking' underground water loss in US drought

6 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

Recommended for you

Cancer: Tumors absorb sugar for mobility

2 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

Early hormone therapy may be safe for women's hearts

11 hours ago

(HealthDay)—Healthy women at low risk of cardiovascular disease may be able to take hormone replacement therapy soon after menopause for a short time without harming their hearts, according to a new study.

Low yield for repeat colonoscopy in some patients

12 hours ago

(HealthDay)—Repeat colonoscopies within 10 years are of little benefit to patients who had no polyps found on adequate examination; however, repeat colonoscopies do benefit patients when the baseline examination was compromised, ...

Cell's recycling center implicated in division decisions

14 hours ago

Most cells do not divide unless there is enough oxygen present to support their offspring, but certain cancer cells and other cell types circumvent this rule. Researchers at The Johns Hopkins University have now identified ...

User comments : 0