Engineers create 3-D model to help biologists combat blue tongue virus

Jun 23, 2008
Dr. Greg Gibbons, University of Warwick, with the Model
Dr Greg Gibbons, University of Warwick with the model. Credit: University of Warwick

A large 3D model of the Blue Tongue virus has been created by WMG engineering researchers at the University of Warwick that will help biologists devise new ways to combat the virus and protect millions of livestock from infection.

The WMG University of Warwick researchers based their model on data provided by the Institute of Animal Health at Pirbright, and from Oxford University. The Warwick team used rapid prototyping technology, normally used to create highly accurate 3D copies of components for a range of manufacturing processes, to create an accurate 3D model virus that is 5,200,000 times the size of the real thing.

Dr Greg Gibbons, who leads the University of Warwick's WMG's rapid prototyping team, is working with Professor Peter Mertens, head of the Arbovirus Research Group at the Institute of Animal Health at Pirbright, and Robert Esnouf of Oxford.

Dr Gibbons said: "Research collaboration between engineers and biologists is rare although we have worked with Oxford and the IAH before. The physical model we've created is based on the same technology we use to quickly and cheaply create models of, for example, car parts; used by manufacturers to develop designs and test products before going into full-scale production."

The insect-borne virus is most commonly seen in the late summer and autumn and can devastate herds of sheep and cattle.

Professor Mertens said: "Blue Tongue represents the worst threat to agriculture this country has seen for 20 years. In its first year in Belgium it wiped out 100 sheep, but in its second year it wiped out 30,000. In Britain we have 34 million sheep – we could be looking at losing up to 20 per cent of that population."

"I don't know of any other way to create a scientifically accurate model of a virus. By using the computer models we've generated we can feed that information into the machines at WMG and create an absolutely perfect model of the real virus."

"The model will help us to understand how the molecules and proteins interact with one another and this could help us to develop new anti-viral drugs. Having a physical model that you can pick up and peer at will make a huge difference."


Source: University of Warwick

Explore further: Cloning whistle-blower: little change in S. Korea

add to favorites email to friend print save as pdf

Related Stories

And now, the volcano forecast

10 hours ago

Scientists are using volcanic gases to understand how volcanoes work, and as the basis of a hazard-warning forecast system.

How large-scale technology projects affect knowledge

Oct 21, 2014

What do an accelerator complex at Cern, a manufacturing center in 19th century Philadelphia and lotus cultivation during the Qing dynasty all have in common? All such activities generate knowledge and know-how. ...

Researchers developing algorithms to detect fake reviews

Oct 21, 2014

Anyone who has conducted business online—from booking a hotel to buying a book to finding a new dentist or selling their wares—has come across reviews of said products and services. Chances are they've also encountered ...

Robots recognize humans in disaster environments

Oct 21, 2014

Through a computational algorithm, a team of researchers from the University of Guadalajara (UDG) in Mexico, developed a neural network that allows a small robot to detect different patterns, such as images, ...

Recommended for you

Cloning whistle-blower: little change in S. Korea

23 hours ago

The whistle-blower who exposed breakthrough cloning research as a devastating fake says South Korea is still dominated by the values that allowed science fraudster Hwang Woo-suk to become an almost untouchable ...

Color and texture matter most when it comes to tomatoes

Oct 21, 2014

A new study in the Journal of Food Science, published by the Institute of Food Technologists (IFT), evaluated consumers' choice in fresh tomato selection and revealed which characteristics make the red fruit most appealing.

How the lotus got its own administration

Oct 21, 2014

Actually the lotus is a very ordinary plant. Nevertheless, during the Qing dynasty (1644-1911) a complex bureaucratic structure was built up around this plant. The lotus was part of the Imperial Household, ...

User comments : 0