Engineers create 3-D model to help biologists combat blue tongue virus

Jun 23, 2008
Dr. Greg Gibbons, University of Warwick, with the Model
Dr Greg Gibbons, University of Warwick with the model. Credit: University of Warwick

A large 3D model of the Blue Tongue virus has been created by WMG engineering researchers at the University of Warwick that will help biologists devise new ways to combat the virus and protect millions of livestock from infection.

The WMG University of Warwick researchers based their model on data provided by the Institute of Animal Health at Pirbright, and from Oxford University. The Warwick team used rapid prototyping technology, normally used to create highly accurate 3D copies of components for a range of manufacturing processes, to create an accurate 3D model virus that is 5,200,000 times the size of the real thing.

Dr Greg Gibbons, who leads the University of Warwick's WMG's rapid prototyping team, is working with Professor Peter Mertens, head of the Arbovirus Research Group at the Institute of Animal Health at Pirbright, and Robert Esnouf of Oxford.

Dr Gibbons said: "Research collaboration between engineers and biologists is rare although we have worked with Oxford and the IAH before. The physical model we've created is based on the same technology we use to quickly and cheaply create models of, for example, car parts; used by manufacturers to develop designs and test products before going into full-scale production."

The insect-borne virus is most commonly seen in the late summer and autumn and can devastate herds of sheep and cattle.

Professor Mertens said: "Blue Tongue represents the worst threat to agriculture this country has seen for 20 years. In its first year in Belgium it wiped out 100 sheep, but in its second year it wiped out 30,000. In Britain we have 34 million sheep – we could be looking at losing up to 20 per cent of that population."

"I don't know of any other way to create a scientifically accurate model of a virus. By using the computer models we've generated we can feed that information into the machines at WMG and create an absolutely perfect model of the real virus."

"The model will help us to understand how the molecules and proteins interact with one another and this could help us to develop new anti-viral drugs. Having a physical model that you can pick up and peer at will make a huge difference."


Source: University of Warwick

Explore further: Ig Nobel winner: Using pork to stop nosebleeds

add to favorites email to friend print save as pdf

Related Stories

Asian monsoon much older than previously thought

Sep 14, 2014

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Recommended for you

Ig Nobel winner: Using pork to stop nosebleeds

Sep 19, 2014

There's some truth to the effectiveness of folk remedies and old wives' tales when it comes to serious medical issues, according to findings by a team from Detroit Medical Center.

History books spark latest Texas classroom battle

Sep 16, 2014

As Texas mulls new history textbooks for its 5-plus million public school students, some academics are decrying lessons they say exaggerate the influence of Christian values on America's Founding Fathers.

Flatow, 'Science Friday' settle claims over grant

Sep 16, 2014

Federal prosecutors say radio host Ira Flatow and his "Science Friday" show that airs on many National Public Radio stations have settled civil claims that they misused money from a nearly $1 million federal ...

User comments : 0