A doorman in plant cells

Jun 20, 2008

Scientists at the University of Tübingen, Germany identified important signalling-protein for the stress-response of plant cells. The research group of Klaus Harter at the Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Germany, identified the AHK5 as an important signalling-protein for the stress-response in plant cells.

Stomatal guard cells monitor and respond to environmental and endogenous signals such that the stomatal aperture is continually optimised for water use efficiency. A key signalling molecule produced in guard cells in response to plant hormones, light, car-bon dioxide and pathogen-derived signals is hydrogen peroxide (H2O2). The mecha-nisms by which H2O2integrates multiple signals via specific signalling pathways lead-ing to stomatal closure is not known.

Klaus Harter and his team, together with the research groups of Alfred Meixner, Insti-tute for Physical and Theoretical Chemistry, University of Tübingen, Germany and of Radhika Desikan, Imperial College London, UK identified a pathway by which H2O2, derived from endogenous and environmental stimuli, is sensed and transduced to ef-fect stomatal closure. Histidine kinases (HK) are part of two-component signal trans-duction systems that act to integrate environmental stimuli into a cellular response via a phosphotransfer relay mechanism. There is little known about the function of the HK AHK5 in Arabidopsis thaliana. Here we report that in addition to the predicted cyto-plasmic localisation of this protein, AHK5 also appears to co-localise to the plasma membrane. Although AHK5 is expressed at low levels in guard cells, we identify a unique role for AHK5 in stomatal signalling. Arabidopsis mutants lacking AHK5 show reduced stomatal closure in re-sponse to H2O2, which is reversed by complementation with the wild type gene.

Over-expression of AHK5 results in constitutively less stomatal closure. Abiotic stimuli that generate endogenous H2O2, such as darkness, nitric oxide and the phytohormone ethylene, also show reduced stomatal closure in the ahk5 mutants. However, ABA caused closure, dark adaptation induced H2O2production and H2O2induced NO syn-thesis in mutants. Treatment with the bacterial pathogen associated molecular pattern (PAMP) flagellin, but not elf peptide, also exhibited reduced stomatal closure and H2O2generation in ahk5 mutants.

These findings identify an integral signalling function for AHK5 that acts to integrate multiple signals via H2O2homeostasis and is independent of ABA signalling in guard cells.

Source: Universitaet Tuebingen

Explore further: Warming, decanting and swirling: do they make wine taste better?

add to favorites email to friend print save as pdf

Related Stories

On the way to a safe and secure smart home

36 minutes ago

A growing number of household operations can be managed via the Internet. Today's "Smart Home" promises efficient building management. But often the systems are not secure and can only be retrofitted at great ...

New research shows temperatures vary block by block

46 minutes ago

This summer has seen the temperature rise above the severe heat mark of 90 degrees just five times, with the latest happening Wednesday afternoon. That's far fewer times than in an average New York summer.

Central biobank for drug research

6 minutes ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

The underestimated risk of ethanol fireplaces

16 minutes ago

Ethanol fireplaces are becoming more and more popular. However, they are not only highly combustible – in the past, severe accents have occurred repeatedly with decorative fireplaces. The devices also pollute ...

Fingerprints for freight items

26 minutes ago

Security is a top priority in air freight logistics but screening procedures can be very time consuming and costly. Fraunhofer researchers intend to boost efficiency with a new approach to digital logistics, ...

Recommended for you

How does your wine make you feel?

Aug 29, 2014

University of Adelaide researchers are investigating the links between wine, where it's consumed and emotion to help the Australian wine industry gain deeper consumer insights into their products.

User comments : 0