A doorman in plant cells

Jun 20, 2008

Scientists at the University of Tübingen, Germany identified important signalling-protein for the stress-response of plant cells. The research group of Klaus Harter at the Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Germany, identified the AHK5 as an important signalling-protein for the stress-response in plant cells.

Stomatal guard cells monitor and respond to environmental and endogenous signals such that the stomatal aperture is continually optimised for water use efficiency. A key signalling molecule produced in guard cells in response to plant hormones, light, car-bon dioxide and pathogen-derived signals is hydrogen peroxide (H2O2). The mecha-nisms by which H2O2integrates multiple signals via specific signalling pathways lead-ing to stomatal closure is not known.

Klaus Harter and his team, together with the research groups of Alfred Meixner, Insti-tute for Physical and Theoretical Chemistry, University of Tübingen, Germany and of Radhika Desikan, Imperial College London, UK identified a pathway by which H2O2, derived from endogenous and environmental stimuli, is sensed and transduced to ef-fect stomatal closure. Histidine kinases (HK) are part of two-component signal trans-duction systems that act to integrate environmental stimuli into a cellular response via a phosphotransfer relay mechanism. There is little known about the function of the HK AHK5 in Arabidopsis thaliana. Here we report that in addition to the predicted cyto-plasmic localisation of this protein, AHK5 also appears to co-localise to the plasma membrane. Although AHK5 is expressed at low levels in guard cells, we identify a unique role for AHK5 in stomatal signalling. Arabidopsis mutants lacking AHK5 show reduced stomatal closure in re-sponse to H2O2, which is reversed by complementation with the wild type gene.

Over-expression of AHK5 results in constitutively less stomatal closure. Abiotic stimuli that generate endogenous H2O2, such as darkness, nitric oxide and the phytohormone ethylene, also show reduced stomatal closure in the ahk5 mutants. However, ABA caused closure, dark adaptation induced H2O2production and H2O2induced NO syn-thesis in mutants. Treatment with the bacterial pathogen associated molecular pattern (PAMP) flagellin, but not elf peptide, also exhibited reduced stomatal closure and H2O2generation in ahk5 mutants.

These findings identify an integral signalling function for AHK5 that acts to integrate multiple signals via H2O2homeostasis and is independent of ABA signalling in guard cells.

Source: Universitaet Tuebingen

Explore further: Physicist creates ice cream that changes colors as it's licked

add to favorites email to friend print save as pdf

Related Stories

Misinformation diffusing online

1 hour ago

The spread of misinformation through online social networks is becoming an increasingly worrying problem. Researchers in India have now modeled how such fictions and diffuse through those networks. They described details ...

Brother of Hibiscus is found alive and well on Maui

1 hour ago

Most people are familiar with Hibiscus flowers- they are an iconic symbol of tropical resorts worldwide where they are commonly planted in the landscape. Some, like Hawaii's State Flower- Hibiscus brackenridgei- are en ...

Congressional rift over environment influences public

2 hours ago

American citizens are increasingly divided over the issue of environmental protection and seem to be taking their cue primarily from Congress, finds new research led by a Michigan State University scholar.

Recommended for you

F1000Research brings static research figures to life

Jul 30, 2014

F1000Research today published new research from Bjorn Brembs, professor of neurogenetics at the Institute of Zoology, Universitaet Regensburg, in Germany, with a proof-of-concept figure allowing readers and reviewers to run ...

How science can beat the flawed metric that rules it

Jul 30, 2014

In order to improve something, we need to be able to measure its quality. This is true in public policy, in commercial industries, and also in science. Like other fields, science has a growing need for quantitative ...

User comments : 0