Researchers find an evolutionarily preserved signature in the primate brain

Jun 20, 2008

Researchers from Uppsala University, Karolinska Institute, and the University of Chicago, have determined that there are hundreds of biological differences between the sexes when it comes to gene expression in the cerebral cortex of humans and other primates. These findings, published June 20th in the open-access journal PLoS Genetics, indicate that some of these differences arose a very long time ago and have been preserved through the evolution of primates. These conserved differences constitute a signature of sex differences in the brain.

More obvious gender differences have been preserved throughout primate evolution; examples include average body size and weight, and genitalia design. This novel study focuses on gene expression within the cerebral cortex – that area of the brain that is involved in such complex functions in humans and other primates as memory, attentiveness, thought processes, and language.

The researchers measured gene expression in the brains of male and female primates from three species: humans, macaques, and marmosets. To measure activity of specific genes, the products of genes (RNA) obtained from the brain of each animal were hybridized to microarrays containing thousands of DNA clones coding for thousands of genes. The authors also investigated DNA sequence differences among primates for genes showing different levels of expression between the sexes.

"Knowledge about gender differences is important for many reasons. For example, this information may be used in the future to calculate medical dosages, as well as for other treatments of diseases or damage to the brain," says Professor Elena Jazin of Uppsala University.

Lead author Björn Reinius notes that the study does not determine whether these differences in gene expression are in any way functionally significant. Such questions remain to be answered by future studies.

Source: Public Library of Science www.plosgenetics.org/doi/pgen.1000100

Explore further: Down's chromosome cause genome-wide disruption

add to favorites email to friend print save as pdf

Related Stories

New technique for identifying gene-enhancers

Mar 24, 2014

An international team led by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new technique for identifying gene enhancers - sequences of DNA that act to amplify the ...

Scientists shed some light on biological "dark matter"

Jan 20, 2014

Biologists have studied the functionality of a poorly understood category of genes, which produce long non-coding RNA molecules rather than proteins. Some of these genes have been conserved throughout evolution, ...

Recommended for you

Refining the language for chromosomes

4 hours ago

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

New pain relief targets discovered

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...