European Science Foundation aims to strengthen 'regenerative medicine'

Jun 19, 2008

14 Member Organisations of the European Science Foundation have launched a key initiative to keep Europe at the forefront of regenerative medicine; broadly defined as the development of stem cell therapies to restore lost, damaged, or ageing cells and tissues in the human body.

Stem cells are the body's 'master cells' that have not yet been programmed to perform a specific function. Most tissues have their own supply of stem cells, and it is becoming clear that if these cells can be given the appropriate biochemical instructions, they can 'differentiate' into new tissue. In this way, for example, stem cells could be seeded into damaged heart muscle to repair it.

Regenerative medicine has many advantages over more conventional ways of repairing or replacing damaged tissues or organs. Because the stem cells are taken from the person being treated, there are no problems with the body's immune system recognising the cells as 'foreign' and attempting to reject them, something that is still a problem with organ transplantation, for example.

To help ensure that Europe retains its competitive edge in the field, the ESF has launched REMEDIC, a research networking programme in regenerative medicine (13 May 2008). For the next five years a steering committee of 13 of Europe's leading specialists in regenerative medicine will organise a series of meetings and workshops to bring together experts to share ideas and develop new collaborations.

"I think this network will be very important to allow scientists in the field to share and disseminate information," says Professor Yrjö Konttinen, of Biomedicum Helsinki in Finland, who chairs the steering committee. "The network is open, so we will be in contact with many different organisations with an interest in the field. We want to meet people, establish joint collaborations with existing programmes and we will also be seeking funding for new initiatives."

REMEDIC will concentrate on the potential of a particular type of cell in the body called mesenchymal stromal cells. These can be obtained from fat tissue and coaxed to differentiate into a range of cell types, including bone, cartilage and muscle. Once the cells are in the relevant tissue, their growth and proliferation can be protected by biomaterials, which are structures implanted into the body that can guide the growth of the new tissue.

REMEDIC's first workshop is planned for mid-August in Helsinki, and a call for short term and exchange visits will be launched in late 2008. REMEDIC is a Research Networking Programme managed by the European Medical Research Councils (EMRC) at the European Science Foundation.

Source: European Science Foundation

Explore further: Exploring 3-D printing to make organs for transplants

add to favorites email to friend print save as pdf

Related Stories

Materials scientists turn to collagen

Jun 05, 2014

(Phys.org) —Miniature scaffolds made from collagen – the 'glue' that holds our bodies together – are being used to heal damaged joints, and could be used to develop new cancer therapies or help repair ...

Growing a business, from the lab

Feb 03, 2014

In the early 1990s, MIT researcher Shuguang Zhang, then an MIT postdoc, stumbled upon peptides that could self-assemble into nanostructures, creating three-dimensional environments for cell culturing. It ...

Recommended for you

Exploring 3-D printing to make organs for transplants

23 hours ago

Printing whole new organs for transplants sounds like something out of a sci-fi movie, but the real-life budding technology could one day make actual kidneys, livers, hearts and other organs for patients ...

High frequency of potential entrapment gaps in hospital beds

Jul 30, 2014

A survey of beds within a large teaching hospital in Ireland has shown than many of them did not comply with dimensional standards put in place to minimise the risk of entrapment. The report, published online in the journal ...

Key element of CPR missing from guidelines

Jul 29, 2014

Removing the head tilt/chin lift component of rescue breaths from the latest cardiopulmonary resuscitation (CPR) guidelines could be a mistake, according to Queen's University professor Anthony Ho.

Burnout impacts transplant surgeons (w/ Video)

Jul 28, 2014

Despite saving thousands of lives yearly, nearly half of organ transplant surgeons report a low sense of personal accomplishment and 40% feel emotionally exhausted, according to a new national study on transplant surgeon ...

User comments : 0