Scientists discover DNA knot keeps viral genes tightly corked inside shell

Jun 17, 2008
Viral Structure
A donut-shaped twist, or toroid, of DNA (shown in red) wedges the viral genome tightly within the protein envelope of the bacteriophage. Credit: Credit: Jinghua Tang/UCSD

A novel twist of DNA may keep viral genes tightly wound within a capsule, waiting for ejection into a host, a high-resolution analysis of its structure has revealed.

Using electron microscopy and three-dimensional computer reconstruction, UC San Diego biologists and chemists have produced the most detailed image yet of the protein envelope of an asymmetrical virus and the viral DNA packed within, they report this week in the journal Structure. The image, with a resolution of less than a nanometer, or a millionth of a millimeter, will help to unravel how the virus locks onto its host and infects the cells by injecting its DNA.

By assembling more than 12,000 microscopic views of frozen viral particles from different angles, UCSD chemists Jinghua Tang, Norman Olson and Timothy Baker, a professor of chemistry and biological sciences, have determined the structure of a bacteriophage called phi29 with a resolution finer than 8 Angstroms (one Angstrom equals a tenth of a nanometer). Their project was part of a long-term collaboration with molecular virologist Dwight Anderson and his colleagues at the University of Minnesota.

Although the structures of spherical viruses with a high degree of symmetry have been resolved using similar methods, many more images were required to accomplish the same task for the head-and-tail shape of phi29. The UCSD scientists said their images of phi29 are twice as fine as those created in previous efforts to visualize viruses with a similar shape.

A comparison between images of the virus with and without its DNA cargo revealed that the DNA twists tightly into a donut shape, or toroid, in the neck of the virus between its head and tail. "This highly distorted DNA structure is unlike anything previously seen or even predicted in a virus," said Timothy Baker who headed the research team. "It's an improbably tight turn for DNA, which is generally considered inflexible over very small distances."

During assembly of the virus, a molecular motor in the neck winds the DNA strand into a tight coil within the head. "It's under tremendous pressure -- about 20 times that of champagne in a bottle," said Tang, the lead author of the paper.

The knot-like shape of the toroid, along with interlocking bumps in the protein envelope, may keep the DNA wedged into the capsid until the virus docks onto the host cell.

"It's poised in this tube waiting to go through the bacterial wall," Baker said. "All of the components work together to create an infection machine."

Source: University of California - San Diego

Explore further: Wood bison make it to Alaska village; April release planned

add to favorites email to friend print save as pdf

Related Stories

Unlocking the key to immunological memory in bacteria

Mar 02, 2015

A powerful genome editing tool may soon become even more powerful. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) have unlocked the key to how bacteria are able to "steal" genetic ...

Lighting up a new path for novel synthetic polio vaccine

Feb 13, 2015

Scientists from the UK and US are using technology that helped in the design of a new synthetic vaccine to combat the foot and mouth disease virus (FMDV) to now target the virus that causes polio. The synthetic ...

Recommended for you

Italian olive tree disease stumps EU

39 minutes ago

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

6 hours ago

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

7 hours ago

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.