Cell surface receptors are all 'talk' in T cell stimulation

Jun 12, 2008

Understanding the mechanisms that drive healthy immune responses is important when it comes to combating autoimmune diseases, which occur when cells that should attack invading organisms turn on the body instead.

In a study published in the June 13, 2008, issue of Immunity, Tufts researcher Stephen Bunnell, PhD, describes how cell surface receptors cooperate to generate immune responses in a process referred to as costimulation. To reveal how these receptors communicate, Bunnell, assistant professor of pathology at Tufts University School of Medicine and a member of the immunology program faculty at the Sackler School of Graduate Biomedical Sciences, formulated a fluorescent imaging technique that reveals the dynamic movements of proteins within living T cells.

T cells play an essential role defending the body against viruses and bacteria. To mount these defenses, T cells must sense these pathogens via cell surface receptors known as antigen receptors. T cells are much more likely to 'see' the invading organisms when a second group of proteins, known as integrins, becomes involved. Integrins are also cell surface receptors, and act as adhesive hooks that allow the T cell to latch onto its environment. "What we are providing here is insight into how these receptors collaborate, or 'talk' to one another," says Bunnell.

First author Ken Nguyen, a graduate student in immunology in Bunnell's laboratory, found that a particular integrin, VLA-4, influences how cellular structures known as SLP-76 microclusters move within the responding T cell. These structures, which were first discovered by Bunnell, are assembled by the antigen receptor and relay information that is essential for T cell activation. "SLP-76 is a molecular building block that is employed by both antigen receptors and integrins. When VLA-4 is not involved, SLP-76 microclusters move away from the antigen receptor, which causes them to fall apart. We discovered that VLA-4 prevents the separation of SLP-76 microclusters from the antigen receptor. This keeps each SLP-76 microcluster intact for a longer time, and favors the transmission of stimulatory signals," says Bunnell.

Actin filaments are a major component of the 'skeleton' that enables cells to move. In activated T cells, many actin filaments grow at one end and fall apart at the other. These actin filaments 'flow' away from the growing end, much like a treadmill. Nguyen and colleagues showed that these flows drive SLP 76 from the antigen receptor, but are slowed when VLA-4 is engaged. "By altering the movement of actin within the cell, the integrin is collaborating with the antigen receptor to immobilize these complexes and make them survive over time," says Bunnell.

"We have known for some time that integrin signaling and T cell costimulation contribute to autoimmunity. Bunnell's images allow us to see that these can be related phenomena: integrins sensitize the immune system to antigens," says Naomi Rosenberg, PhD, dean of the Sackler School of Graduate Biomedical Sciences and vice dean for research at Tufts University School of Medicine.

In previous research, integrins and antigen receptors were thought of as working individually, in terms of geography and mechanism. Earlier studies by Bunnell, and recent studies by other investigators, have led researchers to believe that antigen receptors are most effective when located near integrins. Importantly, this study indicates that integrins influence the transmission of signals through the same complexes used by the T cell antigen receptor.

"You need to understand the communication between the receptors in order to intelligently intervene and enhance the response to a virus or bacteria, or inhibit a destructive response," says Bunnell.

Bunnell's future research will examine how integrins alter the mechanical properties of activated T cells. By studying how integrins influence the SLP-76 complex, Bunnell will gain insights into the costimulatory processes that enable normal immune responses, and go awry in autoimmune diseases.

Source: Tufts University

Explore further: Paralyzed man recovers some function following transplantation of OECs and nerve bridge

add to favorites email to friend print save as pdf

Related Stories

Chemists recruit anthrax to deliver cancer drugs

Sep 25, 2014

Bacillus anthracis bacteria have very efficient machinery for injecting toxic proteins into cells, leading to the potentially deadly infection known as anthrax. A team of MIT researchers has now hijacked ...

Nanoscale ruler reveals organization of the cell membrane

Jun 25, 2014

After a ten-year effort, Prof. Dr. Michael Reth from the Institute of Biology III of the University of Freiburg and the Max Planck Institute of Immunobiology and Epigenetics has developed a method to investigate ...

New study focuses on protein dynamics

Jan 21, 2010

A discovery by associate professor of chemistry and biochemistry Brian Baker and his research group at the University of Notre Dame reveals the importance of dynamic motion by proteins involved in the body's immune response. ...

First cancer immunotherapy for dogs developed

Jul 04, 2014

Nearly every second dog develops cancer from the age of ten years onward. A few therapies derived from human medicine are available for dogs. A very successful form of therapy by which antibodies inhibit ...

Recommended for you

Neutralising antibodies for safer organ transplants

52 minutes ago

Serious complications can arise following kidney transplants. If dialysis is required within the first seven days, then the transplanted organ is said to have a Delayed Graft Function (DGF), and essentially ...

User comments : 0