Cell surface receptors are all 'talk' in T cell stimulation

Jun 12, 2008

Understanding the mechanisms that drive healthy immune responses is important when it comes to combating autoimmune diseases, which occur when cells that should attack invading organisms turn on the body instead.

In a study published in the June 13, 2008, issue of Immunity, Tufts researcher Stephen Bunnell, PhD, describes how cell surface receptors cooperate to generate immune responses in a process referred to as costimulation. To reveal how these receptors communicate, Bunnell, assistant professor of pathology at Tufts University School of Medicine and a member of the immunology program faculty at the Sackler School of Graduate Biomedical Sciences, formulated a fluorescent imaging technique that reveals the dynamic movements of proteins within living T cells.

T cells play an essential role defending the body against viruses and bacteria. To mount these defenses, T cells must sense these pathogens via cell surface receptors known as antigen receptors. T cells are much more likely to 'see' the invading organisms when a second group of proteins, known as integrins, becomes involved. Integrins are also cell surface receptors, and act as adhesive hooks that allow the T cell to latch onto its environment. "What we are providing here is insight into how these receptors collaborate, or 'talk' to one another," says Bunnell.

First author Ken Nguyen, a graduate student in immunology in Bunnell's laboratory, found that a particular integrin, VLA-4, influences how cellular structures known as SLP-76 microclusters move within the responding T cell. These structures, which were first discovered by Bunnell, are assembled by the antigen receptor and relay information that is essential for T cell activation. "SLP-76 is a molecular building block that is employed by both antigen receptors and integrins. When VLA-4 is not involved, SLP-76 microclusters move away from the antigen receptor, which causes them to fall apart. We discovered that VLA-4 prevents the separation of SLP-76 microclusters from the antigen receptor. This keeps each SLP-76 microcluster intact for a longer time, and favors the transmission of stimulatory signals," says Bunnell.

Actin filaments are a major component of the 'skeleton' that enables cells to move. In activated T cells, many actin filaments grow at one end and fall apart at the other. These actin filaments 'flow' away from the growing end, much like a treadmill. Nguyen and colleagues showed that these flows drive SLP 76 from the antigen receptor, but are slowed when VLA-4 is engaged. "By altering the movement of actin within the cell, the integrin is collaborating with the antigen receptor to immobilize these complexes and make them survive over time," says Bunnell.

"We have known for some time that integrin signaling and T cell costimulation contribute to autoimmunity. Bunnell's images allow us to see that these can be related phenomena: integrins sensitize the immune system to antigens," says Naomi Rosenberg, PhD, dean of the Sackler School of Graduate Biomedical Sciences and vice dean for research at Tufts University School of Medicine.

In previous research, integrins and antigen receptors were thought of as working individually, in terms of geography and mechanism. Earlier studies by Bunnell, and recent studies by other investigators, have led researchers to believe that antigen receptors are most effective when located near integrins. Importantly, this study indicates that integrins influence the transmission of signals through the same complexes used by the T cell antigen receptor.

"You need to understand the communication between the receptors in order to intelligently intervene and enhance the response to a virus or bacteria, or inhibit a destructive response," says Bunnell.

Bunnell's future research will examine how integrins alter the mechanical properties of activated T cells. By studying how integrins influence the SLP-76 complex, Bunnell will gain insights into the costimulatory processes that enable normal immune responses, and go awry in autoimmune diseases.

Source: Tufts University

Explore further: Key milestone for brown fat research with a ground-breaking MRI scan

add to favorites email to friend print save as pdf

Related Stories

Tiny biomolecular tweezers studying force effect of cells

Apr 03, 2014

A new type of biomolecular tweezers could help researchers study how mechanical forces affect the biochemical activity of cells and proteins. The devices—too small to see without a microscope—use opposing ...

Recommended for you

Gate for bacterial toxins found

9 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...