Source of drug-tolerant tuberculosis possibly behind TB relapses, intensity of treatment

Jun 11, 2008

University of Pittsburgh-led researchers discovered that the primary bacteria behind tuberculosis can grow on surfaces and that drug-tolerant strains flourish in these bacterial communities, the research team recently reported in Molecular Microbiology. The findings suggest a possible reason why human tuberculosis (TB) requires months of intensive antibiotic treatment and indicate a potential cause of the relapses that can nonetheless occur.

The researchers are the first to show that Mycobacterium tuberculosis can grow in surface-level bacteria clusters known as biofilms that are common in nature but never before shown for TB bacteria, explained the paper's senior author Graham Hatfull, chair and Eberly Family Professor of Biological Sciences in Pitt's School of Arts and Sciences. Hatfull collaborated and coauthored the paper with Professor William Jacobs Jr. of the Department of Microbiology and Immunology at the Albert Einstein College of Medicine in New York.

Hatfull, Jacobs, and their colleagues found that the biofilm bacteria are physiologically and genetically different from TB bacteria harvested in a lab—the type used in developing antibiotics. These variations result in a population of the bacteria that are "drug-tolerant and harbor persistent cells that survive high concentrations of anti-tuberculosis antibiotics," the team reports.

People with TB typically undergo six to nine months of treatment with multiple antibiotics and most of the bacteria generally die within the first two weeks. Yet the disease can recur, presumably because of drug-tolerant bacteria that have escaped the antibiotic. The source and location of these persistent cells are unknown, but Hatfull and Jacobs' research reveals a possible biofilm origin, Jacobs said.

"The nature of persisting M. tuberculosis cells has been an enigma for the entire field," Jacobs said. "Clearly M. tuberculosis cells in biofilms represent at least one class of persistent cells, and we are testing their biological relevance."

It is not yet known whether the biofilm actually factors into human TB infections, Hatfull said. He added that the only similar research regarding biofilm in living creatures showed the presence of biofilm-like or biofilm-related bacteria in guinea pigs.

"While our data does not show conclusively that biofilm formation in people gives rise to a drug-tolerant population, the fact that biofilms do so in the lab makes this an interesting and testable hypothesis," Hatfull said.

Source: University of Pittsburgh

Explore further: Illuminating the dark side of the genome

add to favorites email to friend print save as pdf

Related Stories

Report: China to declare Qualcomm a monopoly

36 minutes ago

(AP)—Chinese regulators have concluded Qualcomm Inc., one of the biggest makers of chips used in mobile devices, has a monopoly, a government newspaper reported Friday.

Scientists stalk coastal killer

1 hour ago

For much of Wednesday, a small group of volunteers and researchers walked in and out of the surf testing a new form of surveillance on the biggest killer of beach swimmers - rip currents.

Recommended for you

'Killer sperm' prevents mating between worm species

11 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

14 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Japan wraps up Pacific whale hunt

15 hours ago

Japan announced Tuesday that it had wrapped up a whale hunt in the Pacific, the second campaign since the UN's top court ordered Tokyo to halt a separate slaughter in the Antarctic.

Researchers uncover secrets of internal cell fine-tuning

15 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0