Source of drug-tolerant tuberculosis possibly behind TB relapses, intensity of treatment

Jun 11, 2008

University of Pittsburgh-led researchers discovered that the primary bacteria behind tuberculosis can grow on surfaces and that drug-tolerant strains flourish in these bacterial communities, the research team recently reported in Molecular Microbiology. The findings suggest a possible reason why human tuberculosis (TB) requires months of intensive antibiotic treatment and indicate a potential cause of the relapses that can nonetheless occur.

The researchers are the first to show that Mycobacterium tuberculosis can grow in surface-level bacteria clusters known as biofilms that are common in nature but never before shown for TB bacteria, explained the paper's senior author Graham Hatfull, chair and Eberly Family Professor of Biological Sciences in Pitt's School of Arts and Sciences. Hatfull collaborated and coauthored the paper with Professor William Jacobs Jr. of the Department of Microbiology and Immunology at the Albert Einstein College of Medicine in New York.

Hatfull, Jacobs, and their colleagues found that the biofilm bacteria are physiologically and genetically different from TB bacteria harvested in a lab—the type used in developing antibiotics. These variations result in a population of the bacteria that are "drug-tolerant and harbor persistent cells that survive high concentrations of anti-tuberculosis antibiotics," the team reports.

People with TB typically undergo six to nine months of treatment with multiple antibiotics and most of the bacteria generally die within the first two weeks. Yet the disease can recur, presumably because of drug-tolerant bacteria that have escaped the antibiotic. The source and location of these persistent cells are unknown, but Hatfull and Jacobs' research reveals a possible biofilm origin, Jacobs said.

"The nature of persisting M. tuberculosis cells has been an enigma for the entire field," Jacobs said. "Clearly M. tuberculosis cells in biofilms represent at least one class of persistent cells, and we are testing their biological relevance."

It is not yet known whether the biofilm actually factors into human TB infections, Hatfull said. He added that the only similar research regarding biofilm in living creatures showed the presence of biofilm-like or biofilm-related bacteria in guinea pigs.

"While our data does not show conclusively that biofilm formation in people gives rise to a drug-tolerant population, the fact that biofilms do so in the lab makes this an interesting and testable hypothesis," Hatfull said.

Source: University of Pittsburgh

Explore further: Dairy farms asked to consider breeding no-horn cows

Related Stories

Researchers Find Source of Drug-Tolerant Tuberculosis

Jun 12, 2008

University of Pittsburgh-led researchers discovered that the primary bacteria behind tuberculosis can grow on surfaces and that drug-tolerant strains flourish in these bacterial communities, the research team recently reported ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

Mar 28, 2015

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.