QBI neuroscientists make Alzheimer's disease advance

Jun 10, 2008

Queensland Brain Institute (QBI) neuroscientists at UQ have discovered a new way to reduce neuronal loss in the brain of a person with Alzheimer's disease. Memory loss in people with Alzheimer's disease can be attributed to several factors.

These include a build-up of the neuro-toxin Amyloid beta – the major component of amyloid plaques found in patients with Alzheimer's – and corresponding degeneration of a specific population of nerve cells in the basal forebrain.

QBI neuroscientist Dr Elizabeth Coulson's research was recently published in the Journal of Neuroscience.

She said the research had established that the molecule known as p75 neurotrophin receptor was necessary for the Amyloid beta to cause nerve cell degeneration in the basal forebrain.

During her research, Dr Coulson's team found – both in cultured cells and in an animal model of Alzheimer's disease – that it was possible to completely prevent Amyloid beta toxicity by removing the p75 cell death receptor.

"Discovering how Amyloid beta triggers neuronal degeneration has been a question bugging neuroscientists for decades, and we have identified an important piece of the puzzle," Dr Coulson said.

These results provide a novel mechanism to explain the early and characteristic loss of brain cells that occurs in Alzheimer's disease – which are known to be important for memory formation.

Dr Coulson already has patented molecules that can block p75 and is ready to begin testing them in animal models of Alzheimer's disease.

"If such therapy is successful, it probably wouldn't cure this multifaceted disease," Dr Coulson said.

"But it would be a significant improvement on what is currently available for Alzheimer's disease patients."

The World Health Organisation predicts that by 2040, neurodegenerative conditions will become the world's leading cause of death, overtaking cancer.

Alzheimer's disease is the most common dementia affecting 10 per cent of people over 65 and 40 per cent over 80 years of age.

Significant advances in determining the molecular regulation of nerve cell function and survival have major impact on our understanding of more complex areas such as behaviour, cognition, aging and neurological diseases.

Source: Research Australia

Explore further: Monitoring the rise and fall of the microbiome

add to favorites email to friend print save as pdf

Related Stories

How Kindle Unlimited compares with Scribd, Oyster

7 hours ago

Amazon is the latest—and largest—company to offer unlimited e-books for a monthly fee. Here's how Kindle Unlimited, which Amazon announced Friday, compares with rivals Scribd and Oyster.

NASA sees powerful thunderstorms in Tropical Storm Matmo

7 hours ago

Strong thunderstorms reaching toward the top of the troposphere circled Tropical Storm Matmo's center and appeared in a band of thunderstorms on the storm's southwestern quadrant. Infrared imagery from NASA's ...

ISS 'space truck' launch postponed: Arianespace

10 hours ago

The July 24 launch of a robot ship to deliver provisions to the International Space Station has been postponed "for a few days", space transport firm Arianespace said Friday.

Recommended for you

New technology allows hair to reflect almost any color

8 hours ago

What if you could alter your hair to reflect any color in the spectrum? What if you could use a flatiron to press a pattern into your new hair color? Those are possibilities suggested by researchers from ...

User comments : 0