Adult stem cell findings offer new hope for Parkinson's cure

Jun 06, 2008

Research released today provides evidence that a cure for Parkinson's disease could lie just inside the nose of patients themselves.

The Griffith University study published today in the journal Stem Cells found that adult stem cells harvested from the noses of Parkinson's patients gave rise to dopamine-producing brain cells when transplanted into the brain of a rat.

The debilitating symptoms of Parkinson's such as loss of muscle control are caused by degeneration of cells that produce the essential chemical dopamine in the brain.

Current drug therapies replace dopamine in the brain, but these often become less effective after prolonged use.

The discovery is the work of the National Centre for Adult Stem Cell Research, part of Griffith's Eskitis Institute for Cell and Molecular Therapies.

Project leader Professor Alan Mackay-Sim said researchers simulated Parkinson's symptoms in rats by creating lesions on one side of the brain similar to the damage Parkinson's causes in the human brain.

"The lesions to one side of the brain made the rats run in circles," he said.

"When stem cells from the nose of Parkinson's patients were cultured and injected into the damaged area the rats re-aquired the ability to run in a straight line.

"All animals transplanted with the human cells had a dramatic reduction in the rate of rotation within just 3 weeks," he said.

"This provided evidence the cells had differentiated to give rise to dopamine-producing neurons influenced by being in the environment of the brain. In-vitro tests also revealed the presence of dopamine."

"Significantly, none of the transplants led to formation of tumours or teratomas in the host rats as has occurred after embryonic stem cell transplantation in a similar model.

He said like all stem cells, stem cells from the olfactory nerve in the nose are 'naïve' having not yet differentiated into which sort of cells they will give rise to.

"They can still be influenced by the environment they are put into. In this case we transplanted them into the brain, where they were directed to give rise to dopamine producing brain cells."

The advantage of using a patient's own cells is that, unlike stem cells from a foreign embryo, they are not rejected by the patient's immune system, so patients are free from a lifetime of potentially dangerous immuno-suppressant drug therapy.

This development follows Professor Mackay-Sim's 2006 development of a world-first technique that demonstrated that olfactory adult stem cells can give rise to heart, nerve, liver and brain cells.

Source: Research Australia

Explore further: Researchers discover key driver of human aging

Related Stories

Training pig skin cells for neural development

May 01, 2015

A pig's skin cells may hold the key to new treatments and cures for devastating human neurological diseases. Researchers from the University of Georgia's Regenerative Bioscience Center have discovered a process ...

New transitional stem cells discovered

Apr 16, 2015

Pre-eclampsia is a disease that affects 5 to 8 percent of pregnancies in America. Complications from this disease can lead to emergency cesarean sections early in pregnancies to save the lives of the infants and mothers. ...

Research shows blood cells generate neurons in crayfish

Apr 09, 2015

A new study by Barbara Beltz, the Allene Lummis Russell Professor of Neuroscience at Wellesley College, and Irene Söderhäll of Uppsala University, Sweden, published in the August 11 issue of the journal ...

Recommended for you

Researchers discover key driver of human aging

Apr 30, 2015

A study tying the aging process to the deterioration of tightly packaged bundles of cellular DNA could lead to methods of preventing and treating age-related diseases such as cancer, diabetes and Alzheimer's ...

Long-sought biomarker for chronic stress in fish discovered

Apr 30, 2015

Johan Aerts (ILVO/Ghent University), under supervision of Prof. Dr. Sarah De Saeger (Ghent University), has discovered the long-sought biomarker for chronic stress in fish. Fish faced with stressful stimuli launch an endocrine ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

tel4him
not rated yet Jun 09, 2008
As someone with a family history of Parkinson's, this is really exciting for me! I hope something comes of this!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.