Protein found to promote antibiotic resistance in a common food-borne pathogen

Jun 06, 2008

Researchers from Iowa State University have identified a novel factor that promotes the development of antibiotic resistance in a bacterial pathogen. The study, published June 6th in the open-access journal PLoS Pathogens, explains that Mfd, a protein involved in DNA transcription and repair, plays an important role in the development of fluoroquinolone resistance in Campylobacter, a bacterial pathogen commonly associated with food poisoning in humans.

Development of antibiotic resistance in Campylobacter, especially to fluoroquinolone (a broad-spectrum antimicrobial), compromises clinical therapy and poses a public health threat. Previous studies have revealed that Campylobacter is highly mutable to antibiotic treatment and the number of fluoroquinolone-resistant Campylobacter is greatly increased in many regions of the world. But it has not been clear why Campylobacter is able to mutate at such a high frequency.

Using various molecular tools, the research team from the College of Veterinary Medicine, led by Dr. Qijing Zhang, has found that Campylobacter increases the production of Mfd in the presence of a fluoroquinolone antibiotic. Elimination of Mfd from Campylobacter resulted in 100-fold reduction in the rate of emergence of mutants resistant to fluoroquinolones. Without Mfd, the development of fluoroquinolone-resistant Campylobacter under antibiotic treatment is significantly reduced.

These findings have uncovered a previously unrecognized role of Mfd in promoting mutations conferring antibiotic resistance. Despite its importance, Mfd is not the only factor influencing the mutation frequency and future studies will be needed to determine how Mfd increases the emergence of antibiotic-resistant mutants.

Citation: Han J, Sahin O, Barton Y-W, Zhang Q (2008) Key Role of Mfd in the Development of Fluoroquinolone Resistance in Campylobacter jejuni. PLoS Pathog 4(6): e1000083. doi:10.1371/journal.ppat.1000083 (www.plospathogens.org/doi/ppat.1000083)

Source: Public Library of Science

Explore further: Genetic code of the deadly tsetse fly unraveled

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Genetic code of the deadly tsetse fly unraveled

23 minutes ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

23 minutes ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

1 hour ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

Cell resiliency surprises scientists

2 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...