Finding clues for nerve cell repair

Jun 03, 2008

A new study at the Montreal Neurological Institute at McGill University identifies a key mechanism for the normal development of motor nerve cells (motor neurons) - cells that control muscles. This finding is crucial to understanding and treating a range of conditions involving nerve cell loss or damage, from spinal cord injury to neurodegenerative diseases such as ALS, also known as Lou Gehrig's disease.

Nerve cell regeneration is a complex process. Not only do nerve cells have to regenerate, but just as importantly, their specific and individual connections need to be regenerated also. The study, published recently in the Proceedings of the National Academy of Sciences, provides invaluable insight into these vital processes by understanding the mechanisms involved in normal development of selected types of spinal cord motor nerve cells.

Motor neurons are highly specialized. They have distinct characteristics and connect to specific muscle types in specific regions of the body. "These highly targeted nerve cell-to-muscle connections are determined in part by specific patterns of gene expression during embryonic development. More specifically, certain genes are expressed which tell the neuron what its properties will be, where to settle and which particular muscle to connect with," says Dr. Stefano Stifani, neuroscientist at the Montreal Neurological Institute and lead investigator in the study.

When nerve cells develop they require characteristic patterns of gene expression in order to become motor neurons or another type of nerve cell called interneurons. Dr. Stifani and colleagues show that during development, motor nerve cells have to express certain genes that continually suppress interneuron developmental characteristics.

"We have identified a key factor, called Runx1, which controls the correct development of motor neurons in the upper part of the spinal cord. Runx1, a factor that controls gene expression, helps motor neurons to maintain their status by regulating the expression of specific genes. In doing so, it might also help motor neurons find their target muscles."

Understanding the normal development and the highly specialized nature of nerve cells has important implications for understanding diseased or damaged nerve cells. For example, in ALS, the motor nerve cells that are involved in swallowing and controlling the tongue are often the first to degenerate. Knowing the specific patterns of gene expression of different motor nerve cells may help to explain why certain motor neurons are more susceptible to degeneration and help identify new targets for treatments.

Source: Montreal Neurological Institute and Hospital

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Light field microscopy for whole brain activity maps

Jan 29, 2014

(Phys.org) —Advances in light-sheet microscopy have led to impressive images and videos of the brain in action. With this technique, a plane of light is scanned through the sample to excite fluorescent ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

18 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CactusCritter
not rated yet Jun 04, 2008
The British use the term "motor neuron disease" for the pathology that in this country is described as ALS or Lou Gehrig's disease. The British term provides such a concise description of the nature of the pathology that I cannot understand why we use ALS and Lou Gehrig's disease in this country.

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...