Mining for Molecules in the Milky Way

Jun 02, 2008
Mining for Molecules in the Milky Way
The Robert C. Byrd Green Bank Telescope and some molecules it has discovered. CREDIT: Bill Saxton, NRAO/AUI/NSF

Scientists are using the giant Robert C. Byrd Green Bank Telescope (GBT) to go prospecting in a rich molecular cloud in our Milky Way Galaxy. They seek to discover new, complex molecules in interstellar space that may be precursors to life.

"Clouds like this one are the raw material for new stars and planets. We know that complex chemistry builds prebiotic molecules in such clouds long before the stars and planets are formed. There is a good chance that some of these interstellar molecules may find their way to the surface of young planets such as the early Earth, and provide a head start for the chemistry of life. For the first time, we now have the capability to make a very thorough and methodical search to find all the chemicals in the clouds," said Anthony Remijan, of the National Radio Astronomy Observatory (NRAO).

In the past three years, Remijan and his colleagues have used the GBT to discover ten new interstellar molecules, a feat unequalled in such a short time by any other team or telescope.

The scientists discovered those molecules by looking specifically for them. However, they now are changing their strategy and casting a wide net designed to find whatever molecules are present, without knowing in advance what they'll find. In addition, they are making their data available freely to other scientists, in hopes of speeding the discovery process. The research team presented its plan to the American Astronomical Society's meeting in St. Louis, MO.

As molecules rotate and vibrate, they emit radio waves at specific frequencies. Each molecule has a unique pattern of such frequencies, called spectral lines, that constitutes a "fingerprint" identifying that molecule. Laboratory tests can determine the pattern of spectral lines that identifies a specific molecule.

Most past discoveries came from identifying a molecule's pattern in the laboratory, then searching with a radio telescope for that set of spectral lines in a region of sky. So far, more than 140 different molecules have been found that way in interstellar space.

The new study reverses the process. The astronomers will use the GBT to study a cloud of gas and dust in detail, finding all the spectral lines first, then later trying to match them up to molecular patterns using data-mining software.

The astronomers will make a thorough survey of the interstellar cloud in the wide range of radio frequencies between 300 MHz to 50 GHz. This technique, they said, will allow them to discover molecules that would elude more narrow-range observations.

"This strategy wasn't possible at frequencies between 300 MHz and 50 GHz before the GBT. That telescope's tremendous capabilities enable us to open a whole new era of astrochemistry," said Jan M. Hollis, of NASA's Goddard Space Flight Center.

"Based on earlier studies, there are a number of complex, prebiotic molecules that we think are present in such clouds, but only this wide-net approach with the GBT will capture the evidence we need to discover them," Remijan said.

"Complex organic molecules formed in interstellar space are undoubtedly the fundamental building blocks of astrobiology. The complete inventory of such molecules in this cloud will produce a tremendous advance in our understanding of the physical conditions in that cloud and of the first chemical steps toward life," said Phil Jewell, of the NRAO.

As the survey with the GBT continues, the research team plans to release their data to the scientific community. In addition, they are providing software that will allow other scientists to efficiently "mine" the data for the telltale evidence of new molecules.

"There is a wealth of laboratory data now available about the radio fingerprints of many molecules. Data-mining software will make it possible to efficiently match up the spectral lines seen in the laboratory with ones we observe in the interstellar clouds," said Frank Lovas of the National Institute for Standards and Technology.

The scientists are observing Sagittarius B2(N), a cloud near the center of our Galaxy, some 25,000 light-years from Earth, Numerous molecules have been discovered in that cloud in the past.

Source: National Radio Astronomy Observatory

Explore further: Image: The colors of sunset over the ISS

add to favorites email to friend print save as pdf

Related Stories

The cosmic chemistry that gave rise to water

Jan 22, 2015

Earth's water has a mysterious past stretching back to the primordial clouds of gas that birthed the Sun and other stars. By using telescopes and computer simulations to study such star nurseries, researchers ...

Organic conundrum in Large Magellanic Cloud

Jun 23, 2014

(Phys.org) —A group of organic chemicals that are considered carcinogens and pollutants today on Earth, but are also thought to be the building blocks for the origins of life, may hold clues to how carbon-rich ...

The quantum secret to alcohol reactions in space

Jun 30, 2013

Chemists have discovered that an 'impossible' reaction at cold temperatures actually occurs with vigour, which could change our understanding of how alcohols are formed and destroyed in space.

Recommended for you

Russian, American ready for a year in space

6 hours ago

The Russian astronaut heading off for a year in space says he'll miss the natural landscapes on Earth. His American counterpart jokes he won't miss his twin brother.

Image: The colors of sunset over the ISS

18 hours ago

ESA astronaut Samantha Cristoforetti took these images from the International Space Station during her six-month mission. The Progress cargo ship and Soyuz crew spacecraft reflect sunlight as our star sets ...

Feud on Earth but peace in space for US and Russia

21 hours ago

Hundreds of kilometres below on Earth, their governments are locked in a standoff over Ukraine—but up in space, Russian cosmonauts and American astronauts are still working together side by side.

Japan launches replacement spy satellite

21 hours ago

Japan on Thursday successfully launched a replacement spy satellite, its aerospace agency said, as an existing device comes to the end of its working life.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.