Scientists find new 'quasiparticles'

Jun 02, 2008

Weizmann Institute physicists have demonstrated, for the first time, the existence of 'quasiparticles' with one quarter the charge of an electron. This finding could be a first step toward creating exotic types of quantum computers that might be powerful, yet highly stable.

Fractional electron charges were first predicted over 20 years ago under conditions existing in the so-called quantum Hall effect, and were found by the Weizmann group some ten years ago.

Although electrons are indivisible, if they are confined to a two-dimensional layer inside a semiconductor, chilled down to a fraction of a degree above absolute zero and exposed to a strong magnetic field that is perpendicular to the layer, they effectively behave as independent particles, called quasiparticles, with charges smaller than that of an electron. But until now, these charges had always been fractions with odd denominators: one third of an electron, one fifth, etc.

The experiment done by research student Merav Dolev in Prof. Moty Heiblum's group, in collaboration with Drs. Vladimir Umansky and Diana Mahalu, and Prof. Ady Stern, all of the Condensed Matter Physics Department, owes the finding of quarter-charge quasiparticles to an extremely precise setup and unique material properties: The gallium arsenide material they produced for the semiconductor was some of the purest in the world.

The scientists tuned the electron density in the two-dimensional layer – in which about three billion electrons were confined in the space of a square millimeter – such that there were five electrons for every two magnetic field fluxes. The device they created is shaped like a flattened hourglass, with a narrow 'waist' in the middle that allows only a small number of charge-carrying particles to pass through at a time.

The 'shot noise' produced when some passed through and others bounced back caused fluctuations in the current that are proportional to the passing charges, thus allowing the scientists to accurately measure the quasiparticles' charge.

Quarter-charge quasiparticles should act quite differently from odd fractionally charged particles, and this is why they have been sought as the basis of the theoretical 'topographical quantum computer.' When particles such as electrons, photons, or even those with odd fractional charges change places with one another, there is little overall effect. In contrast, quarter-charge particle exchanges might weave a 'braid' that preserves information on the particles' history.

To be useful for topologically-based quantum computers, the quarter-charge particles must be shown to have 'non-Abelian' properties – that is the order of the braiding must be significant. These subtle properties are extremely difficult to observe. Heiblum and his team are now working on devising experimental setups to test for these properties.

Source: Weizmann Institute of Science

Explore further: Could 'Jedi Putter' be the force golfers need?

add to favorites email to friend print save as pdf

Related Stories

First direct observations of excitons in motion achieved

12 hours ago

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

Quirky quark combination creates exotic new particle

Apr 10, 2014

Since the spectacular discovery of the Higgs boson in 2012, physicists at the Large Hadron Collider (LHC), the gigantic particle accelerator outside Geneva, have suffered a bit of a drought when it comes ...

The importance of neutrino research to physics

Apr 03, 2014

Neutrinos are interesting to physicists for some of the same reasons that pottery shards are interesting to archaeologists. Just as archaeologists study broken clay pieces to construct a story about the society ...

'Nanobionics' aims to give plants super powers

Apr 02, 2014

Plants are an engineering marvel of nature. Fueled by sunlight, they recycle our carbon dioxide waste into fresh oxygen for us to breathe. Plus, they make the world prettier. But, with a little help from us humans, can they ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

12 hours ago

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

afbase
1 / 5 (1) Jun 03, 2008
Quasiparticles??? oh boy. i find physics discoveries sillier and sillier by the day. That isn't to say they're not intriguing.
fleem
5 / 5 (2) Jun 03, 2008
They really don't have fractional charges.

Electrons have some structure--an electron's apparent charge varies with what angle you are looking at it (they are anisotropic). Normally electrons and other charged particles are spinning. When they are free (not bound to a low energy level) even the axis of spin varies wildly because of heat. "Quasiparticles" simply mean the electron's spins were lined-up (by a strong magnetic field) so that the other charged particles bound to the same plane always see only certain views of the given electron--making it appear to have a fractional charge to the other particles bound to that plane. The same thing allows two electrons to share an orbital in an atom--they don't see each other (much) because of their alignment. There's a bit more to it in that the orientation of a electron spin does not exactly follow classical mechanics! But this is the gist of what "quasiparticle" means. Unfortunately articles like this tend to sensationalize the concept because they neglect to mention these things.

More news stories

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...