Scientists find new 'quasiparticles'

Jun 02, 2008

Weizmann Institute physicists have demonstrated, for the first time, the existence of 'quasiparticles' with one quarter the charge of an electron. This finding could be a first step toward creating exotic types of quantum computers that might be powerful, yet highly stable.

Fractional electron charges were first predicted over 20 years ago under conditions existing in the so-called quantum Hall effect, and were found by the Weizmann group some ten years ago.

Although electrons are indivisible, if they are confined to a two-dimensional layer inside a semiconductor, chilled down to a fraction of a degree above absolute zero and exposed to a strong magnetic field that is perpendicular to the layer, they effectively behave as independent particles, called quasiparticles, with charges smaller than that of an electron. But until now, these charges had always been fractions with odd denominators: one third of an electron, one fifth, etc.

The experiment done by research student Merav Dolev in Prof. Moty Heiblum's group, in collaboration with Drs. Vladimir Umansky and Diana Mahalu, and Prof. Ady Stern, all of the Condensed Matter Physics Department, owes the finding of quarter-charge quasiparticles to an extremely precise setup and unique material properties: The gallium arsenide material they produced for the semiconductor was some of the purest in the world.

The scientists tuned the electron density in the two-dimensional layer – in which about three billion electrons were confined in the space of a square millimeter – such that there were five electrons for every two magnetic field fluxes. The device they created is shaped like a flattened hourglass, with a narrow 'waist' in the middle that allows only a small number of charge-carrying particles to pass through at a time.

The 'shot noise' produced when some passed through and others bounced back caused fluctuations in the current that are proportional to the passing charges, thus allowing the scientists to accurately measure the quasiparticles' charge.

Quarter-charge quasiparticles should act quite differently from odd fractionally charged particles, and this is why they have been sought as the basis of the theoretical 'topographical quantum computer.' When particles such as electrons, photons, or even those with odd fractional charges change places with one another, there is little overall effect. In contrast, quarter-charge particle exchanges might weave a 'braid' that preserves information on the particles' history.

To be useful for topologically-based quantum computers, the quarter-charge particles must be shown to have 'non-Abelian' properties – that is the order of the braiding must be significant. These subtle properties are extremely difficult to observe. Heiblum and his team are now working on devising experimental setups to test for these properties.

Source: Weizmann Institute of Science

Explore further: New pathway to valleytronics

add to favorites email to friend print save as pdf

Related Stories

Glass for battery electrodes

Jan 13, 2015

Today's lithium-ion batteries are good, but not good enough if our future energy system is to rely on electrical power. Chemists and materials scientists at ETH Zurich have developed a type of glass that ...

How to find and make the most of comet Lovejoy

Jan 12, 2015

Comet Q2 Lovejoy passed closest to Earth on January 7th and has been putting on a great show this past week. Glowing at magnitude +4 with a bluish coma nearly as big as the Full Moon, the comet's easy to ...

Magic numbers of quantum matter revealed by cold atoms

Jan 08, 2015

Topology, a branch of mathematics classifying geometric objects, has been exploited by physicists to predict and describe unusual quantum phases: the topological states of matter. These intriguing phases, ...

Shedding light on why blue LEDs are so tricky to make

Jan 07, 2015

Scientists at University College London, in collaboration with groups at the University of Bath and the Daresbury Laboratory, have uncovered the mystery of why blue light-emitting diodes (LEDs) are so difficult to make, by ...

Recommended for you

New pathway to valleytronics

20 hours ago

A potential avenue to quantum computing currently generating quite the buzz in the high-tech industry is "valleytronics," in which information is coded based on the wavelike motion of electrons moving through ...

New portable vacuum standard

Jan 26, 2015

A novel Portable Vacuum Standard (PVS) has been added to the roster of NIST's Standard Reference Instruments (SRI). It is now available for purchase as part of NIST's ongoing commitment to disseminate measurement ...

Prototype for first traceable PET-MR phantom

Jan 26, 2015

As cancer diagnostic tools, a new class of imagers – which combines positron-emission tomography (PET) with magnetic resonance imaging (MR or MRI) – has shown promise in the few years since these hybrid ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

afbase
1 / 5 (1) Jun 03, 2008
Quasiparticles??? oh boy. i find physics discoveries sillier and sillier by the day. That isn't to say they're not intriguing.
fleem
5 / 5 (2) Jun 03, 2008
They really don't have fractional charges.

Electrons have some structure--an electron's apparent charge varies with what angle you are looking at it (they are anisotropic). Normally electrons and other charged particles are spinning. When they are free (not bound to a low energy level) even the axis of spin varies wildly because of heat. "Quasiparticles" simply mean the electron's spins were lined-up (by a strong magnetic field) so that the other charged particles bound to the same plane always see only certain views of the given electron--making it appear to have a fractional charge to the other particles bound to that plane. The same thing allows two electrons to share an orbital in an atom--they don't see each other (much) because of their alignment. There's a bit more to it in that the orientation of a electron spin does not exactly follow classical mechanics! But this is the gist of what "quasiparticle" means. Unfortunately articles like this tend to sensationalize the concept because they neglect to mention these things.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.