Synergy between biology and physics drives cell-imaging technology

Jun 02, 2008

Developing techniques to image the complex biological systems found at the sub-cellular level has traditionally been hampered by divisions between the academic fields of biology and physics. However, a new interdisciplinary zeal has seen a number of exciting advances in super-resolution imaging technologies.

In the June issue of Physics World, Paul O’Shea, a biophysicist at the University of Nottingham, Michael Somekh, an optical engineer at Nottingham’s Institute of Biophysics, Imaging & Optical Science, and William Barnes, professor of photonics at the University of Exeter, outline these new techniques and explore why their development is an endeavour that requires the best efforts of both biologists and physicists.

The traditional division between the disciplines has found common ground in the effort to image cellular functions. While some living cells are larger than 80 micrometres across, important and interesting cellular processes - such as signalling between cells - can take place at length scales of less than one micrometre.

This poses serious challenges for traditional imaging techniques such as fluorescence microscopy, whereby optical microscopes are used to observe biological structures that have been tagged with fluorescent molecules that emit photons when irradiated with light of a specific wavelength, as these offer a resolution of at best 200 nanometres. Increasingly, biologists have turned to physicists for help in breaking through this “diffraction” limit.

The result has been the development in recent years of several novel techniques to extend the reach of fluorescence microscopy. These include methods such as stimulated emission depletion microscopy (STED), stochastic reconstruction microscopy (STORM), photo-activated localization microscopy (PALM) and structured illumination microscopy, all of which are capable of resolving structures as small as 50 nanometres across. These techniques build on theoretical and experimental tools common to physics that allow the physical diffraction limits of light to be broken.

As the authors of the article explain, “What is fascinating is that the experimental needs of biology are driving developments in imaging technology, while advances in imaging technology are in turn inspiring new biological questions. Many of these developments are also going hand in hand with a revolution that is taking place in biological thinking, which intimately involves physicists.”

Source: Institute of Physics

Explore further: Thermoelectric power plants could offer economically competitive renewable energy

add to favorites email to friend print save as pdf

Related Stories

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

Defects are perfect in laser-induced graphene

Dec 10, 2014

Researchers at Rice University have created flexible, patterned sheets of multilayer graphene from a cheap polymer by burning it with a computer-controlled laser. The process works in air at room temperature ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jun 02, 2008
Brace yourself Biologists! You'll find: (1)The cell does NOT digest food! (2)All that goes on in a cell is "Energy Transfer" in the form of electrons! Function and Malfunction is electronic! COOLING is the cure for cancer!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.