Synergy between biology and physics drives cell-imaging technology

Jun 02, 2008

Developing techniques to image the complex biological systems found at the sub-cellular level has traditionally been hampered by divisions between the academic fields of biology and physics. However, a new interdisciplinary zeal has seen a number of exciting advances in super-resolution imaging technologies.

In the June issue of Physics World, Paul O’Shea, a biophysicist at the University of Nottingham, Michael Somekh, an optical engineer at Nottingham’s Institute of Biophysics, Imaging & Optical Science, and William Barnes, professor of photonics at the University of Exeter, outline these new techniques and explore why their development is an endeavour that requires the best efforts of both biologists and physicists.

The traditional division between the disciplines has found common ground in the effort to image cellular functions. While some living cells are larger than 80 micrometres across, important and interesting cellular processes - such as signalling between cells - can take place at length scales of less than one micrometre.

This poses serious challenges for traditional imaging techniques such as fluorescence microscopy, whereby optical microscopes are used to observe biological structures that have been tagged with fluorescent molecules that emit photons when irradiated with light of a specific wavelength, as these offer a resolution of at best 200 nanometres. Increasingly, biologists have turned to physicists for help in breaking through this “diffraction” limit.

The result has been the development in recent years of several novel techniques to extend the reach of fluorescence microscopy. These include methods such as stimulated emission depletion microscopy (STED), stochastic reconstruction microscopy (STORM), photo-activated localization microscopy (PALM) and structured illumination microscopy, all of which are capable of resolving structures as small as 50 nanometres across. These techniques build on theoretical and experimental tools common to physics that allow the physical diffraction limits of light to be broken.

As the authors of the article explain, “What is fascinating is that the experimental needs of biology are driving developments in imaging technology, while advances in imaging technology are in turn inspiring new biological questions. Many of these developments are also going hand in hand with a revolution that is taking place in biological thinking, which intimately involves physicists.”

Source: Institute of Physics

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Symmetry matters in graphene growth

Mar 16, 2015

What lies beneath growing islands of graphene is important to its properties, according to a new study led by Rice University.

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jun 02, 2008
Brace yourself Biologists! You'll find: (1)The cell does NOT digest food! (2)All that goes on in a cell is "Energy Transfer" in the form of electrons! Function and Malfunction is electronic! COOLING is the cure for cancer!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.