New details on venusian clouds revealed

May 30, 2008
New details on venusian clouds revealed
This beautiful, false-colour ultraviolet image of the Southern hemisphere of Venus was obtained by the Venus Monitoring Camera (VMC) on board ESA’s Venus Express on 27 July 2007. It was taken from a distance of 30 000 km from the planet’s surface at a wavelength of 365 nanometres. The planet is seen from the southern hemisphere: the south pole is at the bottom, while equator is at the top. Credits: ESA/MPS/DLR/IDA

As ESA's Venus Express orbits our sister planet, new images of the cloud structure of one of the most enigmatic atmospheres of the Solar System reveal brand-new details.

Venus is covered by a thick layer of clouds that extends between 45 and 70 km above the surface. These rapidly-moving clouds are mainly composed of micron-sized droplets of sulphuric acid and other aerosols (fine solid or liquid droplets suspended in a gas), the origin of which is unknown.

Earlier missions have shown that the clouds resemble Earth's light fogs, but their thickness creates an impenetrable veil.

The Venus Monitoring Camera (VMC) on board Venus Express has been observing the top of the cloud layer in visible, near-infrared and ultraviolet wavelengths. Ultraviolet observations have shown a wealth of new details including a variety of markings created by variable concentrations of different aerosols located at the top of the cloud layer.

The image presented here (top of the article) is a global view of the southern hemisphere of Venus, obtained from a distance of 30 000 km. The south pole is at the bottom, while equator is at the top.

The appearance of the cloud veil changes dramatically from the equator to the pole. At low latitudes, the shapes are spotty and fragmented. This is indicative of vigorous, convective movement – like that of boiling water in a pot – powered by the radiation of the sun heating the clouds and the atmosphere itself. The bright lace visible on top of the darker cloud deck is made of freshly formed droplets of sulphuric acid.

At mid latitudes, the scene changes – convective patterns give way to more streaky clouds indicating that convection is weaker here, as the amount of sunlight absorbed by the atmosphere decreases.

At high latitudes, the cloud structure changes again. Here it appears as a dense, almost featureless haze forming a kind of polar cap or 'hood' on Venus. The dark, circular feature visible at the lower edge of the image is one of the dark streaks usually present in the polar region, indicating atmospheric parcels spiralling around and towards the pole.

Additional images provide close-up views of the structures described above and show details never seen before. This is possible thanks to the elongated orbit of Venus Express, which allows imaging of the same phenomena from decreasing distances.

Source: ESA

Explore further: Astronomer finds multiple ways to get a fix on near-Earth asteroids

add to favorites email to friend print save as pdf

Related Stories

Venus, if you will, as seen in radar with the GBT

Mar 09, 2015

From earthbound optical telescopes, the surface of Venus is shrouded beneath thick clouds made mostly of carbon dioxide. To penetrate this veil, probes like NASA's Magellan spacecraft use radar to reveal ...

Image: Venus Express snaps swirling vortex

Jan 20, 2015

This ghostly puff of smoke is actually a mass of swirling gas and cloud at Venus' south pole, as seen by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express spacecraft.

Learn about Venus, the hothouse planet near Earth

Feb 23, 2015

Venus was once considered a twin to Earth, as it's roughly the same size and is relatively close to our planet. But once astronomers looked at it seriously in the past half-century or so, a lot of contrasts ...

What makes the solar system interesting to astronomers?

Feb 17, 2015

While most of us are stuck on planet Earth, we're lucky enough to have a fairly transparent atmosphere. This allows us to look up at the sky and observe changes. The ancients noticed planets wandering across ...

Jupiter reaches opposition on February 6th

Feb 05, 2015

Did you see the brilliant Full Snow Moon rising last night? Then you might've also noticed a bright nearby 'star'. Alas, that was no star, but the largest planet in our solar system, Jupiter. And it was no ...

Recommended for you

Scuttling satellites to save space

5 hours ago

It takes a lot of ingenuity – not to mention a massive quantity of sheer force – to get satellites into orbit. Now space engineers are applying comparable ingenuity to the challenge of getting their missions ...

A new look at the sun's magnetic field

5 hours ago

Sunspots, bursts of radiation and violent eruptions are signs that our sun is permanently active. Researchers have long known that this activity varies in a cycle of around eleven years' duration. Even if ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.