Researchers make breakthrough in renewable energy materials

May 29, 2008

University of Queensland researchers have made a ground-breaking discovery that produces highly efficient miniature crystals which could revolutionise the way we harvest and use solar energy.

Professor Max Lu, from UQ's Australian Institute for Bioengineering and Nanotechnology (AIBN), said they were one step closer to the holy grail of cost-effective solar energy with their discovery.

“We have grown the world's first titanium oxide single crystals with large amounts of reactive surfaces, something that was predicted as almost impossible,” Professor Lu said.

“Highly active surfaces in such crystals allow high reactivity and efficiency in devices used for solar energy conversion and hydrogen production.

“Titania nano-crystals are promising materials for cost-effective solar cells, hydrogen production from splitting water, and solar decontamination of pollutants.

“The beauty of our technique is that it is very simple and cheap to make such materials at mild conditions.

“Now that the research has elucidated the conditions required, the method is like cooking in an oven and the crystals can be applied like paints.”

Professor Lu, who was recently awarded a second prestigious Australian Research Council Federation Fellowship, said it wasn't just renewable energy where this research could be applied.

“These crystals are also fantastic for purifying air and water,” he said.

“The same principle for such materials to convert sunlight to electricity is also working to break down pollutants in water and air.

“One could paint these crystals onto a window or a wall to purify the air in a room.

“The potential of applications of this technology in water purification and recycling are huge.”

Professor Lu said it would be about five years for the water and air pollution applications to be commercially available, and about 5 to 10 years for the solar energy conversion using such crystals.

He said the breakthrough technology was a great example of cross-discipline collaborations with work by Professor Sean Smith's Computational Molecular Science group at AIBN, who conducted key computational studies and helped the experimentalist researchers to focus on specific surface modification elements for control of the crystal morphology.

“First-principle computational chemistry is a powerful tool in aiding the design and synthetic realisation of novel nanomaterials, and this work is a beautiful example of the synergy,” Professor Smith said.

Professor Lu said the work was also the result of a very fruitful and long-term international collaboration with Professor Huiming Cheng's group from the Chinese Academy of Sciences, a world-class institution with which UQ has many productive research collaborations.

The research, which was produced with colleagues Huagui Yang, Chenghua Sun, Shizhang Qiao, Gang Liu, Jin Zou, has been published in the latest edition of scientific journal Nature (doi:10.1038/nature06964).

Source: UQ

Explore further: Tiny carbon nanotube pores make big impact

add to favorites email to friend print save as pdf

Related Stories

Keeping hydrogen from cracking metals

Oct 28, 2014

Metal alloys such as steel and zirconium that are used in pipes for nuclear reactors and oil fields naturally acquire a protective oxide or sulfide layer. But hydrogen penetration can lead to their breakdown ...

CHESS X-rays show how to grow crystals from crystals

Oct 08, 2014

(Phys.org) —Way too small to see, nanocrystals – tiny crystals that are at least 1,000 times smaller than the diameter of a human hair – exhibit unprecedented properties that intrigue scientists and engineers. To apply ...

How to make a "perfect" solar absorber

Sep 29, 2014

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material's spectrum of absorption just right: It should absorb virtually all wavelengths of light that ...

Recommended for you

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.